• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Gao Guangyong, Ji Chi, Xia Zhihua. Reversible Data Hiding in Color Encrypted Images Based on Color Channels Correlation and Entropy Coding[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330880
Citation: Gao Guangyong, Ji Chi, Xia Zhihua. Reversible Data Hiding in Color Encrypted Images Based on Color Channels Correlation and Entropy Coding[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330880

Reversible Data Hiding in Color Encrypted Images Based on Color Channels Correlation and Entropy Coding

Funds: This work was supported by the National Key Research and Development Program of China (2020YFB1005600) and the National Natural Science Foundation of China (61662039, 62122032, U1936118).
More Information
  • Author Bio:

    Gao Guangyong: born in 1973. PhD, professor,PhD supervisor. Senior member of CCF. His main research interests include reversible data hiding, computer networks security, multimedia information security, and digital image processing

    Ji Chi: born in 2002. Undergraduate. His main research interests include reversible data hiding and multimedia information security

    Xia Zhihua: born in 1983. PhD, professor, PhD supervisor. Winner of the National Science Fund for Excellent Young Scholars. His main research interests include digital forensic and encrypted image processing

  • Received Date: October 30, 2023
  • Revised Date: June 16, 2024
  • Accepted Date: July 10, 2024
  • Available Online: July 15, 2024
  • With the continuous development of cloud computing technology, the reversible data hiding in encrypted images (RDHEI) has received more and more attention. But most of the reversible data hiding in encrypted images are based on grey-scale, which have great limitations in application scenario compared with color images. Moreover, since the current reversible data hiding methods in the encrypted domain mainly focus on grey-scale images, and there are few optimizations for the characteristics of color images, it is hard to obtain better performance by applying these algorithms, so it is of high value to further investigate the reversible data hiding algorithm in color encrypted images. In this paper, we propose a high-performance RDHEI of color images algorithm for the first time based on color channels correlation and entropy encoding (RDHEI-CE) for cloud computing. First, the RGB channels of the color image are separated and the prediction errors are derived separately. Next, the embedding space is generated by adaptive entropy encoding and prediction errors histogram. The correlation between color channels is then used to further expand the embedding space and embed secret message on the encrypted image. Finally, the marked encrypted image must be scrambled in order to resist a ciphertext-only attack. Compared with most state-of-the-art RDHEI methods, experimental results show that the RDHEI-CE method provides a greater embedding rate and better security and broadens the application scene of reversible data hiding in the cloud.

  • [1]
    Tang Zhenjun, Zhang Xianquan, Li Xianxian, et al. Robust image hashing with ring partition and invariant vector distance[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(1): 200−214 doi: 10.1109/TIFS.2015.2485163
    [2]
    Qin Chuan, Ji Ping, Zhang Xinpeng, et al. Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy[J]. Signal Processing, 2017, 138: 280−293 doi: 10.1016/j.sigpro.2017.03.033
    [3]
    Tao Jinyuan, Li Sheng, Zhang Xinpeng, et al. Towards robust image steganography[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(2): 594−600 doi: 10.1109/TCSVT.2018.2881118
    [4]
    Li Sheng, Zhang Xinpeng. Toward construction-based data hiding: From secrets to fingerprint images[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1482−1497 doi: 10.1109/TIP.2018.2878290
    [5]
    Tang Zhenjun, Chen Lv, Zhang Xianquan, et al. Robust image hashing with tensor decomposition[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(3): 549−560 doi: 10.1109/TKDE.2018.2837745
    [6]
    Celik M U, Sharma G, Tekalp A M, et al. Lossless generalized-LSB data embedding[J]. IEEE Transactions on Image Processing, 2005, 14(2): 253−266 doi: 10.1109/TIP.2004.840686
    [7]
    Tian Jun. Reversible data embedding using a difference expansion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(8): 890−896 doi: 10.1109/TCSVT.2003.815962
    [8]
    Alattar A M. Reversible watermark using the difference expansion of a generalized integer transform[J]. IEEE Transactions on Image Processing, 2004, 13(8): 1147−1156 doi: 10.1109/TIP.2004.828418
    [9]
    Ou Bo, Li Xiaolong, Zhao Yao, et al. Pairwise prediction-error expansion for efficient reversible data hiding[J]. IEEE Transaction Image Processing, 2013, 22(12): 5010−5021 doi: 10.1109/TIP.2013.2281422
    [10]
    Chen Xianyi, Sun Xingming, Sun Huiyu, et al. Reversible watermarking method based on asymmetric-histogram shifting of prediction errors[J]. Journal of Systems and Software, 2013, 86(10): 2620−2626 doi: 10.1016/j.jss.2013.04.086
    [11]
    Ou Bo, Li Xiaolong, Zhao Yao, et al. Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion[J]. Signal Processing: Image Communication, 2014, 29(7): 760−772 doi: 10.1016/j.image.2014.05.003
    [12]
    Peng Fei, Li Xiaolong, Yang Bin. Improved PVO-based reversible data hiding[J]. Digital Signal Processing, 2014, 25: 255−265 doi: 10.1016/j.dsp.2013.11.002
    [13]
    Wang Dewang, Zhang Xianquan, Yu Chunqiang, et al. Reversible data hiding by using adaptive pixel value prediction and adaptive embedding bin selection[J]. IEEE Signal Processing Letters, 2019, 26(11): 1713−1717 doi: 10.1109/LSP.2019.2940873
    [14]
    Qin Jianqiang, Huang Fangjun. Reversible data hiding based on multiple two-dimensional histograms modification[J]. IEEE Signal Processing Letters, 2019, 26(6): 843−847 doi: 10.1109/LSP.2019.2909080
    [15]
    Qi Wenfa, Li Xiaolong, Zhang Tong, et al. Optimal reversible data hiding scheme based on multiple histograms modification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(8): 2300−2312 doi: 10.1109/TCSVT.2019.2942489
    [16]
    Ni Zhicheng, Shi Yunqing, Ansari N, et al. Reversible data hiding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16(3): 354−362 doi: 10.1109/TCSVT.2006.869964
    [17]
    Qin Chuan, Chang Chin-Chen, Huang Ying-Hsuan, et al. An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(7): 1109−1118 doi: 10.1109/TCSVT.2012.2224052
    [18]
    Jia Yujie, Yin Zhaoxia, Zhang Xinpeng, et al. Reversible data hiding based on reducing invalid shifting of pixels in histogram shifting[J]. Signal Processing, 2019, 163: 238−246 doi: 10.1016/j.sigpro.2019.05.020
    [19]
    Puech W, Chaumont M, Strauss O. A reversible data hiding method for encrypted images[G]//SPIE 6819: Proc of the Int Society for Optical Engineering (SPIE). Bellingham, WA: SPIE, 2008: 11−19
    [20]
    Qian Zhenxing, Zhang Xinpeng. Reversible data hiding in encrypted images with distributed source encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(4): 636−646 doi: 10.1109/TCSVT.2015.2418611
    [21]
    Chen Kaimeng, Guan Qingxiao, Zhang Weiming, et al. Reversible data hiding in encrypted images based on binary symmetric channel model and polar code[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(6): 4519−4535 doi: 10.1109/TDSC.2022.3228385
    [22]
    Huang Delu, Wang Jianjun. High-capacity reversible data hiding in encrypted image based on specific encryption process[J]. Signal Processing: Image Communication, 2020, 80: 115632 doi: 10.1016/j.image.2019.115632
    [23]
    Qiu Yingqiang, Ying Qichao, Yang Yuyan, et al. High-capacity framework for reversible data hiding in encrypted image using pixel prediction and entropy encoding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 5874−5887 doi: 10.1109/TCSVT.2022.3163905
    [24]
    佘晓萌,杜洋,马文静,等. 基于像素预测和块标记的图像密文可逆信息隐藏[J]. 计算机研究与发展,2022,59(9):2089−2100 doi: 10.7544/issn1000-1239.20210495

    She Xiaomeng, Du Yang, Ma Wenjing, et al. Reversible data hiding in encrypted images based on pixel prediction and block labeling[J]. Journal of Computer Research and Development, 2022, 59(9): 2089−2100 (in Chinese) doi: 10.7544/issn1000-1239.20210495
    [25]
    Yi Shuang, Zhou Yicong. Separable and reversible data hiding in encrypted images using parametric binary tree labeling[J]. IEEE Transactions on Multimedia, 2019, 21(1): 51−64 doi: 10.1109/TMM.2018.2844679
    [26]
    Puteaux P, Puech W. EPE-based huge-capacity reversible data hiding in encrypted images[C/OL]//Proc of 2018 IEEE Int Workshop on Information Forensics and Security. Piscataway, NJ: IEEE, 2019[2023-05-19]. https://ieeexplore.ieee.org/document/8630788/
    [27]
    Yi Puyang, Yin Zhaoxia, Qian Zhenxing. Reversible data hiding in encrypted images with two-MSB prediction[C/OL]//Proc of 2018 IEEE Int Workshop on Information Forensics and Security. Piscataway, NJ: IEEE, 2019[2023-05-19]. https://ieeexplore.ieee.org/document/8630785/
    [28]
    Chen Kaimeng, Chang Chin-Chen. High-capacity reversible data hiding in encrypted images based on extended run-length coding and block-based MSB plane rearrangement[J]. Journal of Visual Communication and Image Representation, 2019, 58: 334−344 doi: 10.1016/j.jvcir.2018.12.023
    [29]
    Yin Zhaoxia, Xiang Youzhi, Zhang Xinpeng. Reversible data hiding in encrypted images based on multi-MSB prediction and Huffman coding[J]. IEEE Transactions on Multimedia, 2020, 22(4): 874−884 doi: 10.1109/TMM.2019.2936314
    [30]
    Qian Zhenxing, Zhang Xinpeng, Wang Shuozhong. Reversible data hiding in encrypted JPEG bitstream[J]. IEEE Transactions on Multimedia, 2014, 16(5): 1486−1491 doi: 10.1109/TMM.2014.2316154
    [31]
    Zhou Jiantao, Sun Weiwei, Dong Li, et al. Secure reversible image data hiding over encrypted domain via key modulation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(3): 441−452 doi: 10.1109/TCSVT.2015.2416591
    [32]
    Liao Xin, Li Kaide, Yin Jiaojiao. Separable data hiding in encrypted image based on compressive sensing and discrete Fourier transform[J]. Multimedia Tools Application, 2017, 76(3): 20739−20753
    [33]
    Xu Meng, Li Jian. 3D PEE mapping based reversible data hiding for color images[J]. Multimedia Tools Application, 2019, 78(2): 8003−8016
    [34]
    Zhou Siyan, Zhang Weiming, Shen Chaomin. Rate-distortion model for grayscale-invariance reversible data hiding[J]. Signal Processing, 2020, 172: 1−11
    [35]
    Chan Y H, Xu Zixin, Lun P K. A framework of reversible color-to-grayscale conversion with watermarking feature[J]. IEEE Transactions Image Processing, 2020, 29: 859−870 doi: 10.1109/TIP.2019.2936097
    [36]
    Yang Yang, Zou Tianrui, Huang Genyang, et al. A high visual quality color image reversible data hiding scheme based on B-R-G embedding principle and CIEDE2000 assessment metric[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 1860−1874 doi: 10.1109/TCSVT.2021.3084676
    [37]
    马文静,吴友情,殷赵霞. 自适应编码的高容量密文可逆信息隐藏算法[J]. 软件学报,2022,33(12):4746−4757

    Ma Wenjing, Wu Youqing, Yin Zhaoxia. High-capacity reversible data hiding in encrypted images using adaptive encoding[J]. Journal of Software, 2022, 33(12): 4746−4757 (in Chinese)
    [38]
    Yu Chunqiang, Zhang Xianquan, Zhang Xinpeng, et al. Reversible data hiding with hierarchical embedding for encrypted images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(2): 451−466 doi: 10.1109/TCSVT.2021.3062947
    [39]
    Wu Youqing, Xiang Youzhi, Guo Yutang. et al. An improved reversible data hiding in encrypted images using parametric binary tree labeling[J]. IEEE Transactions on Multimedia, 2020, 22(8): 1929−1938 doi: 10.1109/TMM.2019.2952979
    [40]
    Yin Zhaoxia, Peng Yinyin, Xiang Youzhi. Reversible data hiding in encrypted images based on pixel prediction and bit-plane compression[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(2): 992−1002
    [41]
    张秋余,冯玉春. 自适应的密文彩色图像可逆数据隐藏算法[J]. 计算机应用与软件,2020,37(2):313−321 doi: 10.3969/j.issn.1000-386x.2020.02.049

    Zhang Qiuyu, Feng Yuchun. Adaptive reversible data hiding algorithm of ciphertext color image[J]. Computer Applications and Software, 2020, 37(2): 313−321 (in Chinese) doi: 10.3969/j.issn.1000-386x.2020.02.049
    [42]
    Khelifi F. On the security of a stream cipher in reversible data hiding schemes operating in the encrypted domain[J]. Signal Processing, 2018, 143: 336−345 doi: 10.1016/j.sigpro.2017.09.020
    [43]
    Schaefer G, Stich M. UCID: An uncompressed color image database[G]//SPIE 5307: Proc of the Int Society for Optical Engineering (SPIE). Bellingham, WA: SPIE, 2004: 472−480
    [44]
    Franzen R. The Kodak lossless true color image suite[EB/OL]. [2023-05-19]. http://r0k.us/graphics/kodak/
    [45]
    Weber A. The USC-SIPI image database[EB/OL]. [2023-05-19]. https://sipi.usc.edu/database/
  • Related Articles

    [1]Qi Wenfa, Liu Yuxin, Guo Zongming. Survey of Automatic Removal of Moiré Pattern[J]. Journal of Computer Research and Development, 2024, 61(3): 728-747. DOI: 10.7544/issn1000-1239.202220797
    [2]Xie Minhui, Lu Youyou, Feng Yangyang, Shu Jiwu. A Recommendation Model Inference System Based on GPU Direct Storage Access Architecture[J]. Journal of Computer Research and Development, 2024, 61(3): 589-599. DOI: 10.7544/issn1000-1239.202330402
    [3]Zhang Kaixin, Wang Yijie, Bao Han, Kan Junhui. An Adaptive Erasure-Coded Data Access Method for Cross-Cloud Collaborative Scheduling of Storage and Computation[J]. Journal of Computer Research and Development, 2024, 61(3): 571-588. DOI: 10.7544/issn1000-1239.202330541
    [4]Wang Yuqing, Yang Qiusong, Li Mingshu. A Cache Replacement Policy Based on Instruction Flow Access Pattern Prediction[J]. Journal of Computer Research and Development, 2022, 59(1): 31-46. DOI: 10.7544/issn1000-1239.20200503
    [5]Ou Yan, Feng Yujing, Li Wenming, Ye Xiaochun, Wang Da, Fan Dongrui. Optimum Research on Inner-Inst Memory Access Conflict for Dataflow Architecture[J]. Journal of Computer Research and Development, 2019, 56(12): 2720-2732. DOI: 10.7544/issn1000-1239.2019.20190115
    [6]Li Wenming, Ye Xiaochun, Wang Da, Zheng Fang, Li Hongliang, Lin Han, Fan Dongrui, Sun Ninghui. MACT: Discrete Memory Access Requests Batch Processing Mechanism for High-Throughput Many-Core Processor[J]. Journal of Computer Research and Development, 2015, 52(6): 1254-1265. DOI: 10.7544/issn1000-1239.2015.20150154
    [7]Wang Yizhuo, Zuo Qi, Ji Weixing, Wang Xiaojun, Shi Feng. Memory-Aware Incremental Mapping of Applications to MPSoC[J]. Journal of Computer Research and Development, 2015, 52(5): 1198-1209. DOI: 10.7544/issn1000-1239.2015.20131960
    [8]Wang Lei, Liu Daofu, Chen Yunji, Chen Tianshi, Li Ling. Survey on Partitioning and Scheduling Policies of Shared Resources in Chip-Multiprocessor[J]. Journal of Computer Research and Development, 2013, 50(10): 2212-2227.
    [9]Chen Licheng, Cui Zehan, Bao Yungang, Chen Mingyu, Shen Linfeng, Liang Qi. An Approach for Monitoring Memory Address Traces with Functional Semantic Information[J]. Journal of Computer Research and Development, 2013, 50(5): 1100-1109.
    [10]Zhou Qian, Feng Xiaobing, and Zhang Zhaoqing. Software Pipelining with Cache Profiling Information[J]. Journal of Computer Research and Development, 2008, 45(5): 834-840.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return