• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xue Yuanhai, Yu Xiaoming, Liu Yue, Guan Feng, Cheng Xueqi. Exploration of Weighted Proximity Measure in Information Retrieval[J]. Journal of Computer Research and Development, 2014, 51(10): 2216-2224. DOI: 10.7544/issn1000-1239.2014.20130339
Citation: Xue Yuanhai, Yu Xiaoming, Liu Yue, Guan Feng, Cheng Xueqi. Exploration of Weighted Proximity Measure in Information Retrieval[J]. Journal of Computer Research and Development, 2014, 51(10): 2216-2224. DOI: 10.7544/issn1000-1239.2014.20130339

Exploration of Weighted Proximity Measure in Information Retrieval

More Information
  • Published Date: September 30, 2014
  • A key problem of information retrieval is to provide information takers with relevant, accurate and even complete information. Lots of traditional information retrieval models are based on the bag-of-words assumption, without considering the implied associations among the query terms. Although term proximity has been widely used for boosting the performance of the classical information retrieval models, most of those efforts do not fully consider the different importance between the query terms. For queries in modern information retrieval, the query terms are not only dependent of each other, but also different in importance. Thus, computing the term proximity with taking into account the different importance of terms will be helpful to improve the retrieval performance. In order to achieve this, a weighted term proximity measure method is introduced, which distinguishes the significance of the query terms based on the collections to be searched. Weighted proximity BM25 model(WP-BM25) that integrating this method into the Okapi BM25 model is proposed to rank the retrieved documents. A large number of experiments are conducted on three standard TREC collections which are FR88-89, WT2G and WT10G. The results show that the weighted proximity BM25 model can significantly improve the retrieval performance, and it has good robustness.
  • Related Articles

    [1]Yue Wenjing, Qu Wenwen, Lin Kuan, Wang Xiaoling. Survey of Cardinality Estimation Techniques Based on Machine Learning[J]. Journal of Computer Research and Development, 2024, 61(2): 413-427. DOI: 10.7544/issn1000-1239.202220649
    [2]Mei Canhua, Zhang Yuhong, Hu Xuegang, and Li Peipei. A Weighted Algorithm of Inductive Transfer Learning Based on Maximum Entropy Model[J]. Journal of Computer Research and Development, 2011, 48(9): 1722-1728.
    [3]Hu Wenyu, Sun Zhihui, Wu Yingjie. Study of Sampling Methods on Data Mining and Stream Mining[J]. Journal of Computer Research and Development, 2011, 48(1): 45-54.
    [4]Bai Heng, Gao Yurui, Wang Shijie, and Luo Limin. A Robust Diffusion Tensor Estimation Method for DTI[J]. Journal of Computer Research and Development, 2008, 45(7): 1232-1238.
    [5]Xiao Liang, Wei Zhihui, Wu Huizhong. A Generalized Variational Image Restoration Model Based on MAP and Robust Estimation[J]. Journal of Computer Research and Development, 2007, 44(7): 1105-1113.
    [6]Wang Liming and Zhao Hui. Algorithms of Mining Global Maximum Frequent Itemsets Based on FP-Tree[J]. Journal of Computer Research and Development, 2007, 44(3).
    [7]He Xiaoyang and Wang Yasha. Model-Based Methods for Software Cost Estimation[J]. Journal of Computer Research and Development, 2006, 43(5): 777-783.
    [8]Yang Yidong, Sun Zhihui, Zhang Jing. Finding Outliers in Distributed Data Streams Based on Kernel Density Estimation[J]. Journal of Computer Research and Development, 2005, 42(9): 1498-1504.
    [9]Wang Zhiming, Cai Lianhong, Ai Haizhou. Automatic Estimation of Visual Speech Parameters[J]. Journal of Computer Research and Development, 2005, 42(7): 1185-1190.
    [10]Wu Gaowei, Tao Qing, Wang Jue. Support Vector Machines Based on Posteriori Probability[J]. Journal of Computer Research and Development, 2005, 42(2): 196-202.
  • Cited by

    Periodical cited type(10)

    1. 杨秀璋,彭国军,刘思德,田杨,李晨光,傅建明. 面向APT攻击的溯源和推理研究综述. 软件学报. 2025(01): 203-252 .
    2. 申国霞,常鑫. 基于可信密码模块的网络信道潜在攻击挖掘. 信息技术. 2023(10): 152-156+162 .
    3. 谢峥,路广平,付安民. 一种可扩展的实时多步攻击场景重构方法. 信息安全研究. 2023(12): 1173-1179 .
    4. 黄维贵,孙怡峰,欧旺,王玉宾. 基于不确定攻击图的违规外联风险分析. 信息工程大学学报. 2022(05): 570-577 .
    5. 王文娟,杜学绘,单棣斌. 基于动态概率攻击图的云环境攻击场景构建方法. 通信学报. 2021(01): 1-17 .
    6. 潘亚峰,朱俊虎,周天阳. APT攻击场景重构方法综述. 信息工程大学学报. 2021(01): 55-60+80 .
    7. 罗智勇,杨旭,刘嘉辉,许瑞. 基于贝叶斯攻击图的网络入侵意图分析模型. 通信学报. 2020(09): 160-169 .
    8. 王硕,王建华,汤光明,裴庆祺,张玉臣,刘小虎. 一种智能高效的最优渗透路径生成方法. 计算机研究与发展. 2019(05): 929-941 . 本站查看
    9. 吴东,郭春,申国伟. 一种基于多因素的告警关联方法. 计算机与现代化. 2019(06): 30-37 .
    10. 韩宜轩,秦元庆. 基于因果关联的电力工控系统攻击场景还原. 信息技术. 2019(08): 41-44+48 .

    Other cited types(13)

Catalog

    Article views (1480) PDF downloads (1139) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return