• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Shi Yuliang, Wang Jie. A Multi-Tenant Memory Management Mechanism for Cloud Data Storage[J]. Journal of Computer Research and Development, 2014, 51(11): 2528-2537. DOI: 10.7544/issn1000-1239.2014.20130789
Citation: Shi Yuliang, Wang Jie. A Multi-Tenant Memory Management Mechanism for Cloud Data Storage[J]. Journal of Computer Research and Development, 2014, 51(11): 2528-2537. DOI: 10.7544/issn1000-1239.2014.20130789

A Multi-Tenant Memory Management Mechanism for Cloud Data Storage

More Information
  • Published Date: October 31, 2014
  • With the popularization of cloud computing, software as a service (SaaS) has become an important form of cloud computing. Memory resource owned by each data node in the cloud is a key resource to improve data access performance of multi-tenant applications. Therefore, memory resource share and provisioning have received a lot of attention from SaaS providers. For the service providers, how to reasonably allocate memory resource in each data node in order to obtain higher profits while guaranteeing tenants’ service level agreement (SLA) has become a challenge. Addressing the challenge, we propose a framework of multi-tenant memory management (MTMM) for cloud data storage and corresponding memory allocation method. The method takes the maximum profits service provider can obtain as a target. Combined with tenants’ SLA profit models, the global memory allocation problem is analyzed and modeled as an objective optimal problem. Corresponding the profits service provider can get under different memory allocation strategies are predicted through it. Considering the characteristics of multi-tenant memory allocation, we solve the problem by optimized genetic algorithm in order to improve the performance of the method. Compared with the traditional LRU method and multi-tenant memory allocation method employed in single node, the mechanism proposed in this paper can effectively manage memory and provide higher profits for service providers.
  • Related Articles

    [1]Wang Ran, Zhang Yuchao, Wang Wendong, Xu Ke, Cui Laizhong. Algorithm of Mixed Traffic Scheduling Among Data Centers Based on Prediction[J]. Journal of Computer Research and Development, 2021, 58(6): 1307-1317. DOI: 10.7544/issn1000-1239.2021.20201087
    [2]Zhu Hongrui, Yuan Guojun, Yao Chengji, Tan Guangming, Wang Zhan, Hu Zhongzhe, Zhang Xiaoyang, An Xuejun. Survey on Network of Distributed Deep Learning Training[J]. Journal of Computer Research and Development, 2021, 58(1): 98-115. DOI: 10.7544/issn1000-1239.2021.20190881
    [3]Liu Bingtao, Wang Da, Ye Xiaochun, Fan Dongrui, Zhang Zhimin, Tang Zhimin. The Data-Flow Block Based Spatial Instruction Scheduling Method[J]. Journal of Computer Research and Development, 2017, 54(4): 750-763. DOI: 10.7544/issn1000-1239.2017.20160138
    [4]Sun Chunlei, Wen Xiangming, Lu Zhaoming, Sheng Wanxing, Zeng Nan, Li Yang. Energy Efficiency Optimization Based on Storage Scheduling and Multi-Source Power Supplying of Data Center in Energy Internet[J]. Journal of Computer Research and Development, 2017, 54(4): 703-710. DOI: 10.7544/issn1000-1239.2017.20161016
    [5]Liu Liangjiao, Xie Guoqi, Li Renfa, Yang Liu, Liu Yan. Dynamic Scheduling of Dual-Criticality Distributed Functionalities on Heterogeneous Systems[J]. Journal of Computer Research and Development, 2016, 53(6): 1186-1201. DOI: 10.7544/issn1000-1239.2016.20150175
    [6]Wang Qiang, Li Xiongfei, Wang Jing. A Data Placement and Task Scheduling Algorithm in Cloud Computing[J]. Journal of Computer Research and Development, 2014, 51(11): 2416-2426. DOI: 10.7544/issn1000-1239.2014.20130749
    [7]Zhou Xinlian, Wu Min, Xu Jianbo. BPEC:An Energy-Aware Distributed Clustering Algorithm in WSNs[J]. Journal of Computer Research and Development, 2009, 46(5): 723-730.
    [8]Cui Xunxue, Liu Jianjun, Fan Xiumei. A Distributed Anchor-Free Localization Algorithm in Sensor Networks[J]. Journal of Computer Research and Development, 2009, 46(3): 425-433.
    [9]Zhao Mingyu and Zhang Tianwen. DAG Scheduling for Synchronous Communication in the Network Computing Environment[J]. Journal of Computer Research and Development, 2008, 45(4): 695-705.
    [10]Li Xiaolong, Lin Yaping, Hu Yupeng, Liu Yonghe. A Subset-Based Coverage-Preserving Distributed Scheduling Algorithm[J]. Journal of Computer Research and Development, 2008, 45(1): 180-187.
  • Cited by

    Periodical cited type(10)

    1. 汪廷华,胡振威,占宏祥. 一种新颖的无监督特征选择方法. 山东大学学报(理学版). 2024(12): 130-140 .
    2. 杨鹏飞,陈梅,张忠帅,陈永旭. 自适应邻居和图正则的表示学习. 小型微型计算机系统. 2023(03): 553-559 .
    3. 崔峻玮,翟亚红. 近邻成分分析下的DDoS攻击检测. 湖北汽车工业学院学报. 2023(02): 36-41 .
    4. 朱建勇,李兆祥,徐彬,杨辉,聂飞平. 基于图嵌入的正交局部保持投影无监督特征选择. 计算机科学. 2023(S2): 552-560 .
    5. 樊星男,刘晓娟. 一种适用于轴承故障诊断的改进Mixup数据增强方法. 工程机械. 2022(04): 38-45+9 .
    6. 杨秀璋,宋籍文,武帅,廖文婧,任天舒,刘建义. 一种融合Bert预训练和BiLSTM的场景迁移情感分析研究. 计算机时代. 2022(08): 69-74+79 .
    7. 江兵兵,何文达,吴兴宇,项俊浩,洪立斌,盛伟国. 基于自适应图学习的半监督特征选择. 电子学报. 2022(07): 1643-1652 .
    8. 周长顺,徐久成,瞿康林,申凯丽,章磊. 一种基于改进邻域粗糙集中属性重要度的快速属性约简方法. 西北大学学报(自然科学版). 2022(05): 745-752 .
    9. 张巍,张圳彬. 联合图嵌入与特征加权的无监督特征选择. 广东工业大学学报. 2021(05): 16-23 .
    10. 彭明,张继炎,王慧玲,黄宏昆,刘艳芳. 基于自适应邻域和自表示正则的无监督特征选择算法. 南京理工大学学报. 2021(04): 439-446 .

    Other cited types(23)

Catalog

    Article views (1533) PDF downloads (733) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return