• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zu Jiachen, Hu Guyu, Yan Jiajie, Li Shiji. Resource Management of Service Function Chain in NFV Enabled Network: A Survey[J]. Journal of Computer Research and Development, 2021, 58(1): 137-152. DOI: 10.7544/issn1000-1239.2021.20190823
Citation: Zu Jiachen, Hu Guyu, Yan Jiajie, Li Shiji. Resource Management of Service Function Chain in NFV Enabled Network: A Survey[J]. Journal of Computer Research and Development, 2021, 58(1): 137-152. DOI: 10.7544/issn1000-1239.2021.20190823

Resource Management of Service Function Chain in NFV Enabled Network: A Survey

More Information
  • Published Date: December 31, 2020
  • With the emergence of new network technologies such as cloud computing, software-defined network (SDN) and network function virtualization (NFV), the future network’s management is supposed to become virtual and intelligent. NFV provides an approach to realize service functions based on the virtualization technology, and it adopts general servers to substitute the dedicated middlebox in traditional network, which is able to greatly reduce the capital expenditure (CAPEX) and the operating expense (OPEX) of the telecom service provider (TSP). NFV can also improve flexibility and scalability in the management of network services. Since the end-to-end network services are usually composed of different service functions, it is an important research topic to adopt virtualization technology to build service function chain (SFC) and reasonably allocate and schedule resources. In this paper, based on the background of NFV technology, we introduce the infrastructure, technical basis, and application scenarios of SFC in the NFV enabled network. Afterward, we mainly focus on the different stages of SFC orchestration: SFC composition, SFC placement, SFC scheduling, and SFC adaptive scaling. The correlated existing theoretical research is summarized. Finally, in view of the existing problems, some solutions are proposed and the future research directions are prospected.
  • Related Articles

    [1]Yang Yong, Meng Xiangru, Kang Qiaoyan, Chen Gang. Dynamic Service Function Chain Migration Method Based on Resource Requirements Prediction[J]. Journal of Computer Research and Development, 2023, 60(5): 1151-1163. DOI: 10.7544/issn1000-1239.202111206
    [2]Zhang Huanhuan, An Congkai, Zhao Langcheng, Zhou Anfu, Ma Huadong, Yuan Yi, Cao Ning. Algorithmic Intelligence Right Management Method in Video Cloud-Network Platform[J]. Journal of Computer Research and Development, 2023, 60(4): 828-838. DOI: 10.7544/issn1000-1239.202330023
    [3]Chen Xingyan, Zhang Xuesong, Xie Zhilong, Zhao Yu, Wu Gang. A Computing and Transmission Integrated Optimization Method for Cloud-Edge-End Computing First System[J]. Journal of Computer Research and Development, 2023, 60(4): 719-734. DOI: 10.7544/issn1000-1239.202221053
    [4]Duan Wenxue, Hu Ming, Zhou Qiong, Wu Tingming, Zhou Junlong, Liu Xiao, Wei Tongquan, Chen Mingsong. Reliability in Cloud Computing System: A Review[J]. Journal of Computer Research and Development, 2020, 57(1): 102-123. DOI: 10.7544/issn1000-1239.2020.20180675
    [5]Huang Rui, Zhang Hongqi, Chang Dexian. A Backup and Recovery Mechanism for Security Service Chain Fault in Network Function Virtualization Environment[J]. Journal of Computer Research and Development, 2018, 55(4): 768-781. DOI: 10.7544/issn1000-1239.2018.20170942
    [6]Xu Ran, Wang Wendong, Gong Xiangyang, Que Xirong. Delay-Aware Resource Scheduling Optimization in Network Function Virtualization[J]. Journal of Computer Research and Development, 2018, 55(4): 738-747. DOI: 10.7544/issn1000-1239.2018.20170926
    [7]Zhou Weilin, Yang Yuan, Xu Mingwei. Network Function Virtualization Technology Research[J]. Journal of Computer Research and Development, 2018, 55(4): 675-688. DOI: 10.7544/issn1000-1239.2018.20170937
    [8]Zhou Mosong, Dong Xiaoshe, Chen Heng, Zhang Xingjun. Improving Cloud Platform Based on the Runtime Resource Capacity Evaluation[J]. Journal of Computer Research and Development, 2017, 54(11): 2516-2533. DOI: 10.7544/issn1000-1239.2017.20160700
    [9]Jiang Han, Xu Qiuliang. Secure Multiparty Computation in Cloud Computing[J]. Journal of Computer Research and Development, 2016, 53(10): 2152-2162. DOI: 10.7544/issn1000-1239.2016.20160685
    [10]Wang Binfeng, Su Jinshu, Chen Lin. Review of the Design of Data Center Network for Cloud Computing[J]. Journal of Computer Research and Development, 2016, 53(9): 2085-2106. DOI: 10.7544/issn1000-1239.2016.20150962
  • Cited by

    Periodical cited type(14)

    1. 吴宪,汤红波,赵宇,许明艳. 一种有状态容器跨集群实时迁移方法. 计算机研究与发展. 2024(02): 494-502 . 本站查看
    2. 张人杰,李頔,王方,刘慧. NFV场景下基于协议和目的端口的负载均衡策略. 湖南邮电职业技术学院学报. 2024(03): 1-7 .
    3. 王雅倩,陈心怡,曲睿,周振宇. 基于SDN/NFV的电力物联网时延敏感业务编排方法. 华北电力大学学报(自然科学版). 2023(01): 84-91 .
    4. 苏警. 面向大数据的可扩展网络服务框架设计. 兰州文理学院学报(自然科学版). 2023(01): 50-55 .
    5. 陈婷婷,肖源源. 浅析“新工科”背景下大数据综合实验平台的建设. 中国新通信. 2023(01): 42-47 .
    6. 刘光远,曹晶仪,庞紫园,黄书翠. 一种低时延虚拟网络功能映射及调度优化算法. 西安交通大学学报. 2023(02): 121-130 .
    7. 王媛滔,舒兆港,钟一文,邱彩钰,田佳霖. 基于VNF实例共享的服务功能链部署算法. 计算机应用研究. 2023(06): 1806-1811 .
    8. 熊泽凯,王素红,王靖君,祝长鸿,覃团发. 移动边缘计算中服务功能链的自适应优化部署策略. 电讯技术. 2023(11): 1678-1686 .
    9. 张庆华,张先超,王寅昊,陆军. 面向医疗急救的信息网络服务功能链调度方法. 电子学报. 2023(11): 3128-3136 .
    10. 陈炳丰,谢光强,朱鉴. 基于FusionCompute的虚拟化技术在计算机实验室中的应用. 实验技术与管理. 2022(04): 224-227 .
    11. 任诚,陈绪祥,唐斌文,王宇,李豪. 多源多播服务功能链优化部署算法. 计算机应用研究. 2022(06): 1814-1819 .
    12. 朱国晖,景文焕,李世昌. 基于改进麻雀搜索算法的服务功能链优化映射算法. 计算机应用研究. 2022(07): 2120-2123+2131 .
    13. 陈嘉亮,王丰,张潇. 移动边缘计算网络下的服务功能链部署优化设计. 计算机应用研究. 2022(10): 3108-3113 .
    14. 陈杨,刘作,黎聪,龙俊霖,赵群帅. 基于SDN与NFV的云通信软交换能力切片化部署稳定性研究. 通信技术. 2021(09): 2163-2168 .

    Other cited types(37)

Catalog

    Article views (1372) PDF downloads (990) Cited by(51)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return