• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Wei, Miao Duoqian, Gao Can, Yue Xiaodong. A Neighborhood Rough Sets-Based Co-Training Model for Classification[J]. Journal of Computer Research and Development, 2014, 51(8): 1811-1820. DOI: 10.7544/issn1000-1239.2014.20131049
Citation: Zhang Wei, Miao Duoqian, Gao Can, Yue Xiaodong. A Neighborhood Rough Sets-Based Co-Training Model for Classification[J]. Journal of Computer Research and Development, 2014, 51(8): 1811-1820. DOI: 10.7544/issn1000-1239.2014.20131049

A Neighborhood Rough Sets-Based Co-Training Model for Classification

More Information
  • Published Date: August 14, 2014
  • Pawlak's rough set theory, as a supervised learning model, is only applicable for discrete data. However it is often the case that practical data sets are continuous and involve both few labeled and abundant unlabeled data, which is outside the realm of Pawlak's rough set theory. In this paper, a neighborhood rough sets based co-training model for classification is proposed, which could deal with continuous data and utilize the unlabeled and labeled data to achieve better performance than the classifier learned only from few labeled data. Firstly, a heuristic algorithm based on neighborhood mutual information is put forward to compute the reduct of partially labeled continuous data. Then two diverse reducts are generated. The model employs the two reducts to train two base classifiers on the labeled data, and makes the two base classifiers teach each other on the unlabeled data to boot the their performance iteratively. The experimental results on selected UCI datasets show that the proposed model are more effective to deal with partially labeled continuous data than some representative ones in learning accuracy.
  • Related Articles

    [1]Wang Ran, Zhang Yuchao, Wang Wendong, Xu Ke, Cui Laizhong. Algorithm of Mixed Traffic Scheduling Among Data Centers Based on Prediction[J]. Journal of Computer Research and Development, 2021, 58(6): 1307-1317. DOI: 10.7544/issn1000-1239.2021.20201087
    [2]Zhu Hongrui, Yuan Guojun, Yao Chengji, Tan Guangming, Wang Zhan, Hu Zhongzhe, Zhang Xiaoyang, An Xuejun. Survey on Network of Distributed Deep Learning Training[J]. Journal of Computer Research and Development, 2021, 58(1): 98-115. DOI: 10.7544/issn1000-1239.2021.20190881
    [3]Liu Bingtao, Wang Da, Ye Xiaochun, Fan Dongrui, Zhang Zhimin, Tang Zhimin. The Data-Flow Block Based Spatial Instruction Scheduling Method[J]. Journal of Computer Research and Development, 2017, 54(4): 750-763. DOI: 10.7544/issn1000-1239.2017.20160138
    [4]Sun Chunlei, Wen Xiangming, Lu Zhaoming, Sheng Wanxing, Zeng Nan, Li Yang. Energy Efficiency Optimization Based on Storage Scheduling and Multi-Source Power Supplying of Data Center in Energy Internet[J]. Journal of Computer Research and Development, 2017, 54(4): 703-710. DOI: 10.7544/issn1000-1239.2017.20161016
    [5]Liu Liangjiao, Xie Guoqi, Li Renfa, Yang Liu, Liu Yan. Dynamic Scheduling of Dual-Criticality Distributed Functionalities on Heterogeneous Systems[J]. Journal of Computer Research and Development, 2016, 53(6): 1186-1201. DOI: 10.7544/issn1000-1239.2016.20150175
    [6]Wang Qiang, Li Xiongfei, Wang Jing. A Data Placement and Task Scheduling Algorithm in Cloud Computing[J]. Journal of Computer Research and Development, 2014, 51(11): 2416-2426. DOI: 10.7544/issn1000-1239.2014.20130749
    [7]Zhou Xinlian, Wu Min, Xu Jianbo. BPEC:An Energy-Aware Distributed Clustering Algorithm in WSNs[J]. Journal of Computer Research and Development, 2009, 46(5): 723-730.
    [8]Cui Xunxue, Liu Jianjun, Fan Xiumei. A Distributed Anchor-Free Localization Algorithm in Sensor Networks[J]. Journal of Computer Research and Development, 2009, 46(3): 425-433.
    [9]Zhao Mingyu and Zhang Tianwen. DAG Scheduling for Synchronous Communication in the Network Computing Environment[J]. Journal of Computer Research and Development, 2008, 45(4): 695-705.
    [10]Li Xiaolong, Lin Yaping, Hu Yupeng, Liu Yonghe. A Subset-Based Coverage-Preserving Distributed Scheduling Algorithm[J]. Journal of Computer Research and Development, 2008, 45(1): 180-187.
  • Cited by

    Periodical cited type(10)

    1. 汪廷华,胡振威,占宏祥. 一种新颖的无监督特征选择方法. 山东大学学报(理学版). 2024(12): 130-140 .
    2. 杨鹏飞,陈梅,张忠帅,陈永旭. 自适应邻居和图正则的表示学习. 小型微型计算机系统. 2023(03): 553-559 .
    3. 崔峻玮,翟亚红. 近邻成分分析下的DDoS攻击检测. 湖北汽车工业学院学报. 2023(02): 36-41 .
    4. 朱建勇,李兆祥,徐彬,杨辉,聂飞平. 基于图嵌入的正交局部保持投影无监督特征选择. 计算机科学. 2023(S2): 552-560 .
    5. 樊星男,刘晓娟. 一种适用于轴承故障诊断的改进Mixup数据增强方法. 工程机械. 2022(04): 38-45+9 .
    6. 杨秀璋,宋籍文,武帅,廖文婧,任天舒,刘建义. 一种融合Bert预训练和BiLSTM的场景迁移情感分析研究. 计算机时代. 2022(08): 69-74+79 .
    7. 江兵兵,何文达,吴兴宇,项俊浩,洪立斌,盛伟国. 基于自适应图学习的半监督特征选择. 电子学报. 2022(07): 1643-1652 .
    8. 周长顺,徐久成,瞿康林,申凯丽,章磊. 一种基于改进邻域粗糙集中属性重要度的快速属性约简方法. 西北大学学报(自然科学版). 2022(05): 745-752 .
    9. 张巍,张圳彬. 联合图嵌入与特征加权的无监督特征选择. 广东工业大学学报. 2021(05): 16-23 .
    10. 彭明,张继炎,王慧玲,黄宏昆,刘艳芳. 基于自适应邻域和自表示正则的无监督特征选择算法. 南京理工大学学报. 2021(04): 439-446 .

    Other cited types(23)

Catalog

    Article views (1389) PDF downloads (536) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return