• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhu Jun, Zhao Jieyu, Dong Zhenyu. Image Classification Using Hierarchical Feature Learning Method Combined with Image Saliency[J]. Journal of Computer Research and Development, 2014, 51(9): 1919-1928. DOI: 10.7544/issn1000-1239.2014.20140138
Citation: Zhu Jun, Zhao Jieyu, Dong Zhenyu. Image Classification Using Hierarchical Feature Learning Method Combined with Image Saliency[J]. Journal of Computer Research and Development, 2014, 51(9): 1919-1928. DOI: 10.7544/issn1000-1239.2014.20140138

Image Classification Using Hierarchical Feature Learning Method Combined with Image Saliency

More Information
  • Published Date: August 31, 2014
  • Efficient feature representations for images are essential in many computer vision tasks. In this paper, a hierarchical feature representation combined with image saliency is proposed based on the theory of visual saliency and deep learning, which builds a feature hierarchy layer-by-layer. Each feature learning layer is composed of three parts: sparse coding, saliency max pooling and contrast normalization. To speed up the sparse coding process, we propose batch orthogonal matching pursuit which differs from the traditional method. The salient information is introduced into the image sparse representation, which compresses the feature representation and strengthens the semantic information of the feature representation. Simultaneously, contrast normalization effectively reduces the impact of local variations in illumination and foreground-background contrast, and enhances the robustness of the feature representation. Instead of using hand-crafted descriptors, our model learns an effective image representation directly from images in an unsupervised data-driven manner. The final image classification is implemented with a linear SVM classifier using the learned image representation. We compare our method with many state-of-the-art algorithms including convolutional deep belief networks, SIFT based single layer or multi-layer sparse coding methods, and some kernel based feature learning approaches. The experimental results on two commonly used benchmark datasets Caltech 101 and Caltech 256 show that our method consistently and significantly improves the performance.
  • Related Articles

    [1]Xue Zhihang, Xu Zheming, Lang Congyan, Feng Songhe, Wang Tao, Li Yidong. Text-to-Image Generation Method Based on Image-Text Semantic Consistency[J]. Journal of Computer Research and Development, 2023, 60(9): 2180-2190. DOI: 10.7544/issn1000-1239.202220416
    [2]Li Zituo, Sun Jianbin, Yang Kewei, Xiong Dehui. A Review of Adversarial Robustness Evaluation for Image Classification[J]. Journal of Computer Research and Development, 2022, 59(10): 2164-2189. DOI: 10.7544/issn1000-1239.20220507
    [3]Liang Dachuan, Li Jing, Liu Sai, Li Dongmin. Multiple Object Saliency Detection Based on Graph and Sparse Principal Component Analysis[J]. Journal of Computer Research and Development, 2018, 55(5): 1078-1089. DOI: 10.7544/issn1000-1239.2018.20160681
    [4]Ji Zhong, Nie Linhong. Texture Image Classification with Noise-Tolerant Local Binary Pattern[J]. Journal of Computer Research and Development, 2016, 53(5): 1128-1135. DOI: 10.7544/issn1000-1239.2016.20148320
    [5]Zhou Yu, He Jianjun, Gu Hong, Zhang Junxing. A Fast Partial Label Learning Algorithm Based on Max-loss Function[J]. Journal of Computer Research and Development, 2016, 53(5): 1053-1062. DOI: 10.7544/issn1000-1239.2016.20150267
    [6]Bai Xuefei, Wang Wenjian, Liang Jiye. An Active Contour Model Based on Region Saliency for Image Segmentation[J]. Journal of Computer Research and Development, 2012, 49(12): 2686-2695.
    [7]Dong Jie and Shen Guojie. Remote Sensing Image Classification Based on Fuzzy Associative Classification[J]. Journal of Computer Research and Development, 2012, 49(7): 1500-1506.
    [8]Zeng Dan, Chen Jian, Zhang Qi, and Shi Hao. Global Topology Based Image Stitching Using Hierarchical Triangulation[J]. Journal of Computer Research and Development, 2012, 49(1): 144-151.
    [9]Zhao Xudong, Liu Peng, Liu Jiafeng, and Tang Xianglong. Stationarity and Correlation Test of Image Sequences Based Classification on Scenes with Different Weather Conditions[J]. Journal of Computer Research and Development, 2011, 48(11): 1973-1982.
    [10]Qin Lei, Gao Wen. Scene Image Categorization Based on Content Correlation[J]. Journal of Computer Research and Development, 2009, 46(7): 1198-1205.

Catalog

    Article views (1616) PDF downloads (1190) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return