• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhu Jun, Zhao Jieyu, Dong Zhenyu. Image Classification Using Hierarchical Feature Learning Method Combined with Image Saliency[J]. Journal of Computer Research and Development, 2014, 51(9): 1919-1928. DOI: 10.7544/issn1000-1239.2014.20140138
Citation: Zhu Jun, Zhao Jieyu, Dong Zhenyu. Image Classification Using Hierarchical Feature Learning Method Combined with Image Saliency[J]. Journal of Computer Research and Development, 2014, 51(9): 1919-1928. DOI: 10.7544/issn1000-1239.2014.20140138

Image Classification Using Hierarchical Feature Learning Method Combined with Image Saliency

More Information
  • Published Date: August 31, 2014
  • Efficient feature representations for images are essential in many computer vision tasks. In this paper, a hierarchical feature representation combined with image saliency is proposed based on the theory of visual saliency and deep learning, which builds a feature hierarchy layer-by-layer. Each feature learning layer is composed of three parts: sparse coding, saliency max pooling and contrast normalization. To speed up the sparse coding process, we propose batch orthogonal matching pursuit which differs from the traditional method. The salient information is introduced into the image sparse representation, which compresses the feature representation and strengthens the semantic information of the feature representation. Simultaneously, contrast normalization effectively reduces the impact of local variations in illumination and foreground-background contrast, and enhances the robustness of the feature representation. Instead of using hand-crafted descriptors, our model learns an effective image representation directly from images in an unsupervised data-driven manner. The final image classification is implemented with a linear SVM classifier using the learned image representation. We compare our method with many state-of-the-art algorithms including convolutional deep belief networks, SIFT based single layer or multi-layer sparse coding methods, and some kernel based feature learning approaches. The experimental results on two commonly used benchmark datasets Caltech 101 and Caltech 256 show that our method consistently and significantly improves the performance.
  • Related Articles

    [1]Yu Ying, Wei Wei, Tang Hong, Qian Jin. Multi-Stage Training with Multi-Level Knowledge Self-Distillation for Fine-Grained Image Recognition[J]. Journal of Computer Research and Development, 2023, 60(8): 1834-1845. DOI: 10.7544/issn1000-1239.202330262
    [2]Li Zituo, Sun Jianbin, Yang Kewei, Xiong Dehui. A Review of Adversarial Robustness Evaluation for Image Classification[J]. Journal of Computer Research and Development, 2022, 59(10): 2164-2189. DOI: 10.7544/issn1000-1239.20220507
    [3]Liang Dachuan, Li Jing, Liu Sai, Li Dongmin. Multiple Object Saliency Detection Based on Graph and Sparse Principal Component Analysis[J]. Journal of Computer Research and Development, 2018, 55(5): 1078-1089. DOI: 10.7544/issn1000-1239.2018.20160681
    [4]Ji Zhong, Nie Linhong. Texture Image Classification with Noise-Tolerant Local Binary Pattern[J]. Journal of Computer Research and Development, 2016, 53(5): 1128-1135. DOI: 10.7544/issn1000-1239.2016.20148320
    [5]Zhou Yu, He Jianjun, Gu Hong, Zhang Junxing. A Fast Partial Label Learning Algorithm Based on Max-loss Function[J]. Journal of Computer Research and Development, 2016, 53(5): 1053-1062. DOI: 10.7544/issn1000-1239.2016.20150267
    [6]Bai Xuefei, Wang Wenjian, Liang Jiye. An Active Contour Model Based on Region Saliency for Image Segmentation[J]. Journal of Computer Research and Development, 2012, 49(12): 2686-2695.
    [7]Dong Jie and Shen Guojie. Remote Sensing Image Classification Based on Fuzzy Associative Classification[J]. Journal of Computer Research and Development, 2012, 49(7): 1500-1506.
    [8]Zhao Xudong, Liu Peng, Liu Jiafeng, and Tang Xianglong. Stationarity and Correlation Test of Image Sequences Based Classification on Scenes with Different Weather Conditions[J]. Journal of Computer Research and Development, 2011, 48(11): 1973-1982.
    [9]Qin Lei, Gao Wen. Scene Image Categorization Based on Content Correlation[J]. Journal of Computer Research and Development, 2009, 46(7): 1198-1205.
    [10]Qin Liangxi, Shi Zhongzhi. SFP-Max—A Sorted FP-Tree Based Algorithm for Maximal Frequent Patterns Mining[J]. Journal of Computer Research and Development, 2005, 42(2): 217-223.
  • Cited by

    Periodical cited type(10)

    1. 杨秀璋,彭国军,刘思德,田杨,李晨光,傅建明. 面向APT攻击的溯源和推理研究综述. 软件学报. 2025(01): 203-252 .
    2. 申国霞,常鑫. 基于可信密码模块的网络信道潜在攻击挖掘. 信息技术. 2023(10): 152-156+162 .
    3. 谢峥,路广平,付安民. 一种可扩展的实时多步攻击场景重构方法. 信息安全研究. 2023(12): 1173-1179 .
    4. 黄维贵,孙怡峰,欧旺,王玉宾. 基于不确定攻击图的违规外联风险分析. 信息工程大学学报. 2022(05): 570-577 .
    5. 王文娟,杜学绘,单棣斌. 基于动态概率攻击图的云环境攻击场景构建方法. 通信学报. 2021(01): 1-17 .
    6. 潘亚峰,朱俊虎,周天阳. APT攻击场景重构方法综述. 信息工程大学学报. 2021(01): 55-60+80 .
    7. 罗智勇,杨旭,刘嘉辉,许瑞. 基于贝叶斯攻击图的网络入侵意图分析模型. 通信学报. 2020(09): 160-169 .
    8. 王硕,王建华,汤光明,裴庆祺,张玉臣,刘小虎. 一种智能高效的最优渗透路径生成方法. 计算机研究与发展. 2019(05): 929-941 . 本站查看
    9. 吴东,郭春,申国伟. 一种基于多因素的告警关联方法. 计算机与现代化. 2019(06): 30-37 .
    10. 韩宜轩,秦元庆. 基于因果关联的电力工控系统攻击场景还原. 信息技术. 2019(08): 41-44+48 .

    Other cited types(13)

Catalog

    Article views (1617) PDF downloads (1192) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return