• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Wei, Xu Ruomei, Li Yuling. A Privacy-Preserving Integrity-Verification-Based Top-k Query Processing[J]. Journal of Computer Research and Development, 2014, 51(12): 2585-2592. DOI: 10.7544/issn1000-1239.2014.20140666
Citation: Chen Wei, Xu Ruomei, Li Yuling. A Privacy-Preserving Integrity-Verification-Based Top-k Query Processing[J]. Journal of Computer Research and Development, 2014, 51(12): 2585-2592. DOI: 10.7544/issn1000-1239.2014.20140666

A Privacy-Preserving Integrity-Verification-Based Top-k Query Processing

More Information
  • Published Date: November 30, 2014
  • The two-tiered wireless sensor networks have become the research hotspot because of its scalability and long lifetime. Top-k query is an important query type but most Top-k query technologies cannot perform precise query. A Top-k query asks for data items whose numeric attributes are among the k highest, where k is an application-dependent parameter. The privacy preservation is important for Top-k query in a hostile environment because sensitive information may leak from compromised nodes. The integrity and authenticity of the Top-k query results should be verified because the adversary can instruct a compromised master node to delete or modify data in response to Top-k queries. This paper presents a precise query algorithm called PI-TQ (privacy-preserving integrity-verification Top-k query) which provides both privacy preservation and integrity verification. The algorithm uses a two-step query method to reduce the communication traffic between nodes and sinks. To ensure the privacy and correctness of the query results, the perturbation algorithm is utilized to protect the privacy of sensitive data. The neighbor verification method achieves integrity verification by using probability space. The simulation results show that PI-TQ algorithm can greatly reduce the computational cost and traffic consumption compared with other algorithms. It can also guarantee accuracy, privacy and integrity of the query results.
  • Related Articles

    [1]Jiang Tao, Li Zhanhuai. A Survey on Local Pattern Mining in Gene Expression Data[J]. Journal of Computer Research and Development, 2018, 55(11): 2343-2360. DOI: 10.7544/issn1000-1239.2018.20170629
    [2]Miao Dongjing, Liu Xianmin, Li Jianzhong. An Algorithm on Mining Approximate Functional Dependencies in Probabilistic Database[J]. Journal of Computer Research and Development, 2015, 52(12): 2857-2865. DOI: 10.7544/issn1000-1239.2015.20140685
    [3]Wang Yuanzhuo, Jia Yantao, Liu Dawei, Jin Xiaolong, Cheng Xueqi. Open Web Knowledge Aided Information Search and Data Mining[J]. Journal of Computer Research and Development, 2015, 52(2): 456-474. DOI: 10.7544/issn1000-1239.2015.20131342
    [4]Ding Zhaoyun, Jia Yan, Zhou Bin. Survey of Data Mining for Microblogs[J]. Journal of Computer Research and Development, 2014, 51(4): 691-706.
    [5]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [6]Liao Guoqiong, Wu Lingqin, Wan Changxuan. Frequent Patterns Mining over Uncertain Data Streams Based on Probability Decay Window Model[J]. Journal of Computer Research and Development, 2012, 49(5): 1105-1115.
    [7]Zhu Ranwei, Wang Peng, and Liu Majin. Algorithm Based on Counting for Mining Frequent Items over Data Stream[J]. Journal of Computer Research and Development, 2011, 48(10): 1803-1811.
    [8]Hu Wenyu, Sun Zhihui, Wu Yingjie. Study of Sampling Methods on Data Mining and Stream Mining[J]. Journal of Computer Research and Development, 2011, 48(1): 45-54.
    [9]Yang Bei, Huang Houkuan. Mining Top-K Significant Itemsets in Landmark Windows over Data Streams[J]. Journal of Computer Research and Development, 2010, 47(3): 463-473.
    [10]Yang Bingru, Gao Jing, and Song Wei. Application Research of Cognitive Physics in Data Mining[J]. Journal of Computer Research and Development, 2006, 43(8): 1432-1438.

Catalog

    Article views (1728) PDF downloads (1017) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return