• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Wei, Xu Ruomei, Li Yuling. A Privacy-Preserving Integrity-Verification-Based Top-k Query Processing[J]. Journal of Computer Research and Development, 2014, 51(12): 2585-2592. DOI: 10.7544/issn1000-1239.2014.20140666
Citation: Chen Wei, Xu Ruomei, Li Yuling. A Privacy-Preserving Integrity-Verification-Based Top-k Query Processing[J]. Journal of Computer Research and Development, 2014, 51(12): 2585-2592. DOI: 10.7544/issn1000-1239.2014.20140666

A Privacy-Preserving Integrity-Verification-Based Top-k Query Processing

More Information
  • Published Date: November 30, 2014
  • The two-tiered wireless sensor networks have become the research hotspot because of its scalability and long lifetime. Top-k query is an important query type but most Top-k query technologies cannot perform precise query. A Top-k query asks for data items whose numeric attributes are among the k highest, where k is an application-dependent parameter. The privacy preservation is important for Top-k query in a hostile environment because sensitive information may leak from compromised nodes. The integrity and authenticity of the Top-k query results should be verified because the adversary can instruct a compromised master node to delete or modify data in response to Top-k queries. This paper presents a precise query algorithm called PI-TQ (privacy-preserving integrity-verification Top-k query) which provides both privacy preservation and integrity verification. The algorithm uses a two-step query method to reduce the communication traffic between nodes and sinks. To ensure the privacy and correctness of the query results, the perturbation algorithm is utilized to protect the privacy of sensitive data. The neighbor verification method achieves integrity verification by using probability space. The simulation results show that PI-TQ algorithm can greatly reduce the computational cost and traffic consumption compared with other algorithms. It can also guarantee accuracy, privacy and integrity of the query results.
  • Related Articles

    [1]Wang Jiye, Zhou Biyu, Zhang Fa, Shi Xiang, Zeng Nan, Liu Zhiyong. Data Center Energy Consumption Models and Energy Efficient Algorithms[J]. Journal of Computer Research and Development, 2019, 56(8): 1587-1603. DOI: 10.7544/issn1000-1239.2019.20180574
    [2]Liu Yang, Feng Xiang, Yu Huiqun, Luo Fei. Physarum Dynamic Optimization Algorithm Based on Energy Mechanism[J]. Journal of Computer Research and Development, 2017, 54(8): 1772-1784. DOI: 10.7544/issn1000-1239.2017.20170343
    [3]Wang Haizhou, Chen Xingshu, Du Min, Wang Wenxian. A Modeling Framework with Population Dynamics for Content Pollution Proliferation in P2P IPTV System[J]. Journal of Computer Research and Development, 2016, 53(6): 1314-1324. DOI: 10.7544/issn1000-1239.2016.20150066
    [4]Feng Xiang, Ma Meiyi, and Yu Huiqun. Lake-Energy Optimization Algorithm for Travelling Salesman Problem[J]. Journal of Computer Research and Development, 2013, 50(9): 2015-2027.
    [5]Wen Renqiang, Zhong Shaobo, Yuan Hongyong, Huang Quanyi. Emergency Resource Multi-Objective Optimization Scheduling Model and Multi-Colony Ant Optimization Algorithm[J]. Journal of Computer Research and Development, 2013, 50(7): 1464-1472.
    [6]Huang Jianbin, Bai Yang, Kang Jianmei, Zhong Xiang, Zhang Xin, Sun Heli. A Network Community Detection Method Based on Dynamic Model of Synchronization[J]. Journal of Computer Research and Development, 2012, 49(10): 2198-2207.
    [7]Shi Min, Mao Tianlu, Wang Zhaoqi, Xia Shihong. Cloth Animation Based on Implicit Constraint Dynamics[J]. Journal of Computer Research and Development, 2012, 49(7): 1388-1397.
    [8]Peng Yuxing, Wu Jiqing, and Shen Rui. Distributed Computing Model and Supporting Technologies for the Dynamic Allocation of Internet Resources[J]. Journal of Computer Research and Development, 2011, 48(9): 1580-1588.
    [9]Han Xuming, Zuo Wanli, Wang Limin, Shi Xiaohu. Atmospheric Quality Assessment Model Based on Immune Algorithm Optimization and Its Applications[J]. Journal of Computer Research and Development, 2011, 48(7): 1307-1313.
    [10]Liu Chun'an, Wang Yuping. Dynamic Multi-Objective Optimization Evolutionary Algorithm Based on New Model[J]. Journal of Computer Research and Development, 2008, 45(4): 603-611.

Catalog

    Article views (1709) PDF downloads (1008) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return