Advanced Search
    Zhang Huanlong, Hu Shiqiang, Yang Guosheng. Video Object Tracking Based on Appearance Models Learning[J]. Journal of Computer Research and Development, 2015, 52(1): 177-190. DOI: 10.7544/issn1000-1239.2015.20130995
    Citation: Zhang Huanlong, Hu Shiqiang, Yang Guosheng. Video Object Tracking Based on Appearance Models Learning[J]. Journal of Computer Research and Development, 2015, 52(1): 177-190. DOI: 10.7544/issn1000-1239.2015.20130995

    Video Object Tracking Based on Appearance Models Learning

    • Visual tracking is an active reasch topic in the field of computer vision and has been well studied in the last decades. A key component for achieving robust tracking is the tracker’s capability of updating its internal representation of tragets to capture the varying appearance. Although numberous approaches have been proposed, many challenging problems still remain in designing an effective model of the appearance of tracked objects. In recent years, the methods of appearance model associated with statistical learning have been promoting the study for video object tracking. To help reader swiftly learn the rencent advances and trends so as to easily grasp the key problems of visual object tracking based on appearance models learning, a detailed review of the existing appearance learning models is provided. Here, the mechanism of the tracking algorithm based on appearance model learning is introduced firstly. Then the state-of-the-art feature descriptors are analyzed to show their different performance. Meanwhile, the tracking progress is categorized into three main groups, and the character of representative methods in each group are compared and analyzed in detail. Finally, the current research on the tracking methods based appearance model learning is summarized and classified, and the further application and research trend is discussed.
    • loading

    Catalog

      Turn off MathJax
      Article Contents

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return