• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Bi Xiaojun, Zhang Lei, Xiao Jing. Constrained Multi-Objective Optimization Algorithm Based on Dual Populations[J]. Journal of Computer Research and Development, 2015, 52(12): 2813-2823. DOI: 10.7544/issn1000-1239.2015.20148025
Citation: Bi Xiaojun, Zhang Lei, Xiao Jing. Constrained Multi-Objective Optimization Algorithm Based on Dual Populations[J]. Journal of Computer Research and Development, 2015, 52(12): 2813-2823. DOI: 10.7544/issn1000-1239.2015.20148025

Constrained Multi-Objective Optimization Algorithm Based on Dual Populations

More Information
  • Published Date: November 30, 2015
  • In order to improve the distribution and convergence of constrained multi-objective optimization algorithms, this paper proposes a constrained multi-objective optimization algorithm based on dual populations. The improved Harmonic distance eliminates the effect of the individuals whose Pareto grade is weak and distance is far, consequently the distribution of population can be enhanced. Also it reduces the amount of calculation effectively and improves the efficiency of the suggested algorithm. Then, the new update method of the infeasible solution set is closely linked with the feasible solution set, and these infeasible individuals both the objective function value and the constraint violation are excellent can be retained, so the better feasible individuals will be produced in the following evolution process, and the diversity of the populations and the search efficiency are improved simultaneously. Finally, the new variation strategy makes full use of the information of the best feasible individuals and the good infeasible individuals, which ensures the good ability of exploration and exploitation and balances the global and local search. The proposed algorithm is compared with 3 state-of-the-art constrained multi-objective optimization algorithms on CTP test problems. Simulation results show that the presented algorithm has certain advantages than other algorithms because it can ensure good convergence while it has uniform distribution.
  • Related Articles

    [1]Ding Chengcheng, Tao Wei, Tao Qing. A Unified Momentum Method with Triple-Parameters and Its Optimal Convergence Rate[J]. Journal of Computer Research and Development, 2020, 57(8): 1571-1580. DOI: 10.7544/issn1000-1239.2020.20200194
    [2]Cheng Yujia, Tao Wei, Liu Yuxiang, Tao Qing. Optimal Individual Convergence Rate of the Heavy-Ball-Based Momentum Methods[J]. Journal of Computer Research and Development, 2019, 56(8): 1686-1694. DOI: 10.7544/issn1000-1239.2019.20190167
    [3]Tao Wei, Pan Zhisong, Zhu Xiaohui, Tao Qing. The Optimal Individual Convergence Rate for the Projected Subgradient Method with Linear Interpolation Operation[J]. Journal of Computer Research and Development, 2017, 54(3): 529-536. DOI: 10.7544/issn1000-1239.2017.20160155
    [4]Zhang Rubo, Tang Pingpeng, Yang Ge, Li Xueyao, Shi Changting. Convergence Analysis of Adaptive Obstacle Avoidance Decision Processes for Unmanned Surface Vehicle[J]. Journal of Computer Research and Development, 2014, 51(12): 2644-2652. DOI: 10.7544/issn1000-1239.2014.20131011
    [5]Zhang Yushan, Hao Zhifeng, Huang Han. Global Convergence and Premature Convergence of Two-Membered Evolution Strategy[J]. Journal of Computer Research and Development, 2014, 51(4): 754-761.
    [6]Xiong Jinzhi, Xu Jianmin, and Yuan Huaqiang. Convergenceness of a General Formulation for Polynomial Smooth Support Vector Regressions[J]. Journal of Computer Research and Development, 2011, 48(3): 464-470.
    [7]Shao Jie, Yang Jingyu, Wan Minghua, and Huang Chuanbo. Research on Cnvergence of Multi-Robots Path Planning Based on Learning Classifier System[J]. Journal of Computer Research and Development, 2010, 47(5): 948-955.
    [8]Qu Yanwen, Zhang Erhua, and Yang Jingyu. Convergence Property of a Generic Particle Filter Algorithm[J]. Journal of Computer Research and Development, 2010, 47(1): 130-139.
    [9]Zeng Zhiqiang, Wu Qun, Liao Beishui, Zhu Shunzhi. An Improved Working Set Selection Strategy for Sequential Minimal Optimization Algorithm[J]. Journal of Computer Research and Development, 2009, 46(11): 1925-1933.
    [10]Zeng Jianchao and Cui Zhihua. A New Unified Model of Particle Swarm Optimization and Its Theoretical Analysis[J]. Journal of Computer Research and Development, 2006, 43(1): 96-100.
  • Cited by

    Periodical cited type(20)

    1. 韦修喜,彭茂松,黄华娟. 基于多策略改进蝴蝶优化算法的无线传感网络节点覆盖优化. 计算机应用. 2024(04): 1009-1017 .
    2. 刘超敏,胡玉平. 基于VGG—19和卡尔曼预处理的WSNs测距方法. 传感器与微系统. 2023(10): 139-142 .
    3. 刘松旭,张大鹏,乌云娜,刘鹏. 基于RSSI模型的无线传感器网络定位算法. 计算机仿真. 2022(01): 427-431 .
    4. 崔焕庆,张娜,罗汉江. 基于改进鸽群算法的无线传感器网络定位方法. 传感技术学报. 2022(03): 399-404 .
    5. 陈岩 ,高振国 ,王海军 ,欧阳云 ,缑锦 . 隐私保护能力可调的节点定位协议. 计算机研究与发展. 2022(09): 2075-2088 . 本站查看
    6. 刘琳岚,肖庭忠,舒坚,牛明晓. 基于门控循环单元的链路质量预测. 工程科学与技术. 2022(06): 51-58 .
    7. 赵高丽,宋军平. 水下传感器网络自组织连通恢复仿真. 计算机仿真. 2021(03): 152-156 .
    8. 刘恒,钟俊,刘辉. 基于优化核极限学习的WSN网络汇聚节点故障诊断. 新乡学院学报. 2021(06): 28-32 .
    9. 石秦峰,徐祥涛,杨晓东. 基于节点汇聚链路模型的光纤传感器物联网节点控制. 激光杂志. 2021(07): 109-113 .
    10. 张晶,罗施章,付谱平. 基于虚拟力移动锚节点的3D-DVHop-ACR定位算法. 控制与决策. 2021(10): 2409-2417 .
    11. 张盛安,周洋,方浩,孙玉洁. 贵州电网贵阳供电局网络资源敏捷定位关键问题设计. 电力大数据. 2021(05): 79-85 .
    12. 王礼霞,邰清清. 基于高阶马尔可夫链的无线传感器网络异常节点检测. 黑龙江工业学院学报(综合版). 2021(08): 93-97 .
    13. 宰红斌,刘建国,唐保国,马建国,上官明霞,单荣荣. 基于WSN的输电线路状态监测与数据采集跨层优化方法. 电气工程学报. 2021(03): 161-169 .
    14. 郑岚. 多信道通信网络环境下基于节点组簇技术通信资源调度算法. 山西能源学院学报. 2021(05): 97-99 .
    15. 徐逸夫,段隆振. 基于蛙跳算法的无线传感器网络节点重部署. 计算机仿真. 2021(10): 328-332 .
    16. 宋亚磊. 基于虚拟引力约束的光纤传感器网络节点空洞智能修复算法研究. 传感技术学报. 2021(10): 1395-1400 .
    17. 易柏言. 关于无线传感器网络的时间同步技术探究. 科技创新与应用. 2020(15): 152-153 .
    18. 王林,刘盼. 基于卷积神经网络的行人目标检测系统设计. 计算机测量与控制. 2020(07): 64-68+96 .
    19. 左伟伟. 基于微积分算子的网络节点发包概率分布研究. 电子设计工程. 2020(23): 116-119+124 .
    20. 李庐,赵晓峰. 基于拓扑感知映射算法的传感器网络数据稳定传输方法. 湖南科技学院学报. 2020(05): 54-57 .

    Other cited types(6)

Catalog

    Article views (1354) PDF downloads (1040) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return