• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zheng Susu, Fu Xiaodong, Yue Kun, Liu Li, Liu Lijun, Feng Yong. Online Service Reputation Measurement Method Based on Kendall tau Distance[J]. Journal of Computer Research and Development, 2019, 56(4): 884-894. DOI: 10.7544/issn1000-1239.2019.20180034
Citation: Zheng Susu, Fu Xiaodong, Yue Kun, Liu Li, Liu Lijun, Feng Yong. Online Service Reputation Measurement Method Based on Kendall tau Distance[J]. Journal of Computer Research and Development, 2019, 56(4): 884-894. DOI: 10.7544/issn1000-1239.2019.20180034

Online Service Reputation Measurement Method Based on Kendall tau Distance

More Information
  • Published Date: March 31, 2019
  • Due to the inconsistent user preferences and the inconsistent rating criteria, the ratings given by different users to one service are actually incomparable, and the reputation mechanism based on assumption of the consistent rating criteria cannot guarantee the comparability among different service reputations, which will result in unobjective outcome when the reputations are used to choose services. To improve the objectivity of online services reputation measurement under the circumstance referred above, this paper presents a method of online service reputation measurement based on Kendall tau distance. Firstly, a distance metric is defined to measure the consistency between the two rating vectors. Secondly, the measurement of online service reputation is modeled as an optimization problem to find a reputation vector that minimizes the Kendall tau distance between the reputation vector and the user-service rating matrix. Finally, simulated annealing algorithm is used to solve the optimization problem and the reputation vector is served as a service reputation. The rationality and effectiveness of the method have been verified by experimental study. The experiments show that the method can meet the preferences of most users, so that users can make right services choice decision, and ensure the efficiency while improving the manipulation resistance ability of the reputation measurement method.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Zhou Wei, Wang Chao, Xu Jian, Hu Keyong, Wang Jinlong. Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain[J]. Journal of Computer Research and Development, 2022, 59(11): 2423-2436. DOI: 10.7544/issn1000-1239.20220470
    [3]Wang Chenxu, Cheng Jiacheng, Sang Xinxin, Li Guodong, Guan Xiaohong. Data Privacy-Preserving for Blockchain: State of the Art and Trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. DOI: 10.7544/issn1000-1239.2021.20210804
    [4]Song Xiangfu, Gai Min, Zhao Shengnan, Jiang Han. Privacy-Preserving Statistics Protocol for Set-Based Computation[J]. Journal of Computer Research and Development, 2020, 57(10): 2221-2231. DOI: 10.7544/issn1000-1239.2020.20200444
    [5]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [6]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [7]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [8]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [9]Zhu Liehuang, Gao Feng, Shen Meng, Li Yandong, Zheng Baokun, Mao Hongliang, Wu Zhen. Survey on Privacy Preserving Techniques for Blockchain Technology[J]. Journal of Computer Research and Development, 2017, 54(10): 2170-2186. DOI: 10.7544/issn1000-1239.2017.20170471
    [10]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.

Catalog

    Article views (1020) PDF downloads (301) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return