• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yang Tan, Feng Xiang, Yu Huiqun. Feature Selection Algorithm Based on the Multi-Colony Fairness Model[J]. Journal of Computer Research and Development, 2015, 52(8): 1742-1756. DOI: 10.7544/issn1000-1239.2015.20150245
Citation: Yang Tan, Feng Xiang, Yu Huiqun. Feature Selection Algorithm Based on the Multi-Colony Fairness Model[J]. Journal of Computer Research and Development, 2015, 52(8): 1742-1756. DOI: 10.7544/issn1000-1239.2015.20150245

Feature Selection Algorithm Based on the Multi-Colony Fairness Model

More Information
  • Published Date: July 31, 2015
  • As the world gradually transforms from the information world to the data-driven world, the areas of pattern recognition and date mining are facing more and more challenges. Feature subset selection process becomes a necessary part of big-data pattern recognition due to the data with explosive growth. Inspired by the behavior of grabbing resources in animals, the paper adds personal grabbing-resource behavior into the model of resource distribution transformed from the model of feature selection and proposes multi-colony fairness algorithm(MCFA) to deal with this behavior in order to obtain a better distribution scheme (i.e. to obtain a better feature subset). The algorithm effectively fuses the strategies of the random search and the heuristic search. In addition, it combines the methods of filter and wrapper so as to reduce the amount of calculation while improving the classification accuracy. The convergence and the effectiveness of the proposed algorithm are verified both from mathematical and experimental aspects. MCFA is compared with the other four classic feature selection algorithms SFS(sequential forward selection), SBS(sequential backward selection), SFFS(sequential floating forward selection), SBFS(sequential floating backward selection) and three mainstream feature selection algorithms RRFS(relevance-redundancy feature selection), mRMR(minimal-redundancy-maximal-relevance), ReliefF. The comparison results show that the proposed algorithm can obtain better feature subsets both in the aspects of feature subset length and the classification accuracy which indicates the efficiency and the effectiveness of the proposed algorithm.
  • Related Articles

    [1]Fu Nan, Ni Weiwei, Jiang Zepeng, Hou Lihe, Zhang Dongyue, Zhang Ruyu. Directed Graph Clustering Algorithm with Edge Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(1): 256-268. DOI: 10.7544/issn1000-1239.202330193
    [2]Xia Sibo, Ma Minghua, Jin Pengxiang, Cui Liyue, Zhang Shenglin, Jin Wa, Sun Yongqian, Pei Dan. Response Time Anomaly Diagnosis for Search Service[J]. Journal of Computer Research and Development, 2024, 61(6): 1573-1584. DOI: 10.7544/issn1000-1239.202330054
    [3]Zhang Xiaojian, Xu Yaxin, Fu Nan, Meng Xiaofeng. Towards Private Key-Value Data Collection with Histogram[J]. Journal of Computer Research and Development, 2021, 58(3): 624-637. DOI: 10.7544/issn1000-1239.2021.20200319
    [4]Ding Yong, Li Jiahui, Tang Shijie, Wang Huiyong. Template Protection of Speaker Recognition Based on Random Mapping Technology[J]. Journal of Computer Research and Development, 2020, 57(10): 2201-2208. DOI: 10.7544/issn1000-1239.2020.20200474
    [5]Li Shengdong, Lü Xueqiang. Static Restart Stochastic Gradient Descent Algorithm Based on Image Question Answering[J]. Journal of Computer Research and Development, 2019, 56(5): 1092-1100. DOI: 10.7544/issn1000-1239.2019.20180472
    [6]Chen Chi, Feng Dengguo, and Xu Zhen. Research on Database Transaction Recovery Log and Intrusion Response[J]. Journal of Computer Research and Development, 2010, 47(10): 1797-1804.
    [7]Mu Chengpo, Huang Houkuan, Tian Shengfeng, Li Xiangjun. A Survey of Intrusion Response Decision-Making Techniques of Automated Intrusion Response Systems[J]. Journal of Computer Research and Development, 2008, 45(8): 1290-1298.
    [8]Shi Jin, Lu Yin, and Xie Li. Dynamic Intrusion Response Based on Game Theory[J]. Journal of Computer Research and Development, 2008, 45(5): 747-757.
    [9]Liu Li, Wang Zhaoqi, Xia Shihong, Li Chunpeng. Research on Directional Penetration Depth Algorithm in Collision Response[J]. Journal of Computer Research and Development, 2008, 45(3): 519-526.
    [10]Shi Rui and Yang Xiaozong. Research on the Node Spatial Probabilistic Distribution of the Random Waypoint Mobility Model for Ad Hoc Network[J]. Journal of Computer Research and Development, 2005, 42(12): 2056-2062.
  • Cited by

    Periodical cited type(6)

    1. 付楠,倪巍伟,姜泽鹏,侯立贺,张东月,张如玉. 基于本地边差分隐私的有向图聚类算法. 计算机研究与发展. 2025(01): 256-268 . 本站查看
    2. 彭鹏,倪志伟,朱旭辉,陈千. 改进萤火虫群算法协同差分隐私的干扰轨迹发布. 计算机应用. 2024(02): 496-503 .
    3. 刘利康,周春来. RCP:本地差分隐私下的均值保护技术. 计算机科学. 2023(02): 333-345 .
    4. 陈叶旺,曹海露,陈谊,康昭,雷震,杜吉祥. 面向大规模数据的DBSCAN加速算法综述. 计算机研究与发展. 2023(09): 2028-2047 . 本站查看
    5. 尹诗玉,朱友文,张跃. 效用优化的本地差分隐私联合分布估计机制. 计算机科学. 2023(10): 315-326 .
    6. 琚晓颖,何金莉,石琇赟,李顺勇. 基于拉普拉斯机制的集成分类隐私保护研究. 长江信息通信. 2022(08): 23-27 .

    Other cited types(9)

Catalog

    Article views (1453) PDF downloads (882) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return