• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Jiang Shujuan, Han Han, Shi Jiaojiao, Zhang Yanmei, Ju Xiaolin, Qian Junyan. Detecting Infeasible Paths Based on Branch Correlations Analysis[J]. Journal of Computer Research and Development, 2016, 53(5): 1072-1085. DOI: 10.7544/issn1000-1239.2016.20148031
Citation: Jiang Shujuan, Han Han, Shi Jiaojiao, Zhang Yanmei, Ju Xiaolin, Qian Junyan. Detecting Infeasible Paths Based on Branch Correlations Analysis[J]. Journal of Computer Research and Development, 2016, 53(5): 1072-1085. DOI: 10.7544/issn1000-1239.2016.20148031

Detecting Infeasible Paths Based on Branch Correlations Analysis

More Information
  • Published Date: April 30, 2016
  • The existence of infeasible paths causes a waste of test resources in software testing. Detecting these infeasible paths effectively can save test resources and improve test efficiency. Since the correlation of different conditional statements is the main reason of causing infeasible paths of a program and it costs effort for attempting to cover these paths which are never executed during software testing, the determination of branch correlations plays an important role in detecting infeasible paths. The paper proposes a new approach for detecting the infeasible paths based on association analysis and data flow analysis. Firstly, it builds the data-sets that reflect the static dependencies and the dynamic execution information of conditional statements by combining static analysis with dynamic analysis; then, with two types of branch correlations (called A-B correlation and B-B correlation) defined, it determines the branch correlations respectively with two introduced algorithms which are based on association analysis and data flow analysis; finally, it detects the infeasible paths in accordance with the obtained and refined branch correlations. The paper applies the proposed approach to some benchmarks programs and industry programs to validate its efficiency and effectiveness. The experimental results indicate that our approach can detect infeasible paths accurately and improve the efficiency of software testing.
  • Related Articles

    [1]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [2]Zhao Jingxin, Yue Xinghui, Feng Chongpeng, Zhang Jing, Li Yin, Wang Na, Ren Jiadong, Zhang Haoxing, Wu Gaofei, Zhu Xiaoyan, Zhang Yuqing. Survey of Data Privacy Security Based on General Data Protection Regulation[J]. Journal of Computer Research and Development, 2022, 59(10): 2130-2163. DOI: 10.7544/issn1000-1239.20220800
    [3]Chen Yan, Gao Zhenguo, Wang Haijun, Ouyang Yun, Gou Jin. Node Localization Protocol with Adjustable Privacy Protection Capability[J]. Journal of Computer Research and Development, 2022, 59(9): 2075-2088. DOI: 10.7544/issn1000-1239.20210009
    [4]Fu Yao, Li Qingdan, Zhang Zehui, Gao Tiegang. Data Integrity Verification Scheme for Privacy Protection and Fair Payment[J]. Journal of Computer Research and Development, 2022, 59(6): 1343-1355. DOI: 10.7544/issn1000-1239.20210023
    [5]Wang Bin, Zhang Lei, Zhang Guoyin. A Gradual Sensitive Indistinguishable Based Location Privacy Protection Scheme[J]. Journal of Computer Research and Development, 2020, 57(3): 616-630. DOI: 10.7544/issn1000-1239.2020.20190086
    [6]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [7]Yan Xixi, Liu Yuan, Li Zichen, Tang Yongli. Multi-Authority Attribute-Based Encryption Scheme with Privacy Protection[J]. Journal of Computer Research and Development, 2018, 55(4): 846-853. DOI: 10.7544/issn1000-1239.2018.20161043
    [8]Wu Xuangou, Wang Pengfei, Zheng Xiao, Fan Xu, Wang Xiaolin. Trajectory Privacy Protection Based on Road Segment Report in VANETs[J]. Journal of Computer Research and Development, 2017, 54(11): 2467-2474. DOI: 10.7544/issn1000-1239.2017.20170371
    [9]Zhang Honglei, Shi Yuliang, Zhang Shidong, Zhou Zhongmin, Cui Lizhen. A Privacy Protection Mechanism for Dynamic Data Based on Partition-Confusion[J]. Journal of Computer Research and Development, 2016, 53(11): 2454-2464. DOI: 10.7544/issn1000-1239.2016.20150553
    [10]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
  • Cited by

    Periodical cited type(18)

    1. 李红艳,徐寅森,张子栋. 蜂窝移动网络大数据聚类异常挖掘方法仿真. 计算机仿真. 2024(02): 406-409+414 .
    2. 程一帆,刘擎宇,梁泽宇,于昇. 严格可证明安全的两方协同SM2签名协议. 电子学报. 2024(02): 540-549 .
    3. 彭金辉,张志鸿. 面向软件的随机数发生器设计和实现. 计算机工程与设计. 2024(04): 1004-1010 .
    4. 涂彬彬,陈宇. 支持批量证明的SM2适配器签名及其分布式扩展. 软件学报. 2024(05): 2566-2582 .
    5. 荆继武,张世聪,王平建. 门限密码技术及其标准化进展. 密码学报(中英文). 2024(01): 227-254 .
    6. 高文娟. 移动电子签名认证服务在医院信息化的应用. 电脑知识与技术. 2024(21): 83-85 .
    7. 韩庆迪,陆思奇. 基于SOTP加密保护签名私钥的SM2签名方案. 密码学报(中英文). 2024(05): 991-1002 .
    8. 包子健,何德彪,彭聪,罗敏,黄欣沂. 基于SM2数字签名算法的可否认环签名. 密码学报. 2023(02): 264-275 .
    9. 文嘉明,王后珍,刘金会,张焕国. Aitps:基于非对称模格问题的两方协同签名方案. 计算机研究与发展. 2023(09): 2137-2151 . 本站查看
    10. 蔡昭炜,刘从军,刘超. 基于SM2的不动产柜面无纸化签署系统设计与实现. 智能计算机与应用. 2023(09): 122-128 .
    11. 黎洪亮,金华标,庞启君,赵钊. 内嵌SM2算法的内河船机排放数据加密通信装置设计. 农业装备与车辆工程. 2023(10): 28-31+37 .
    12. 彭金辉,雷宗华,张志鸿. ECDSA协同签名方案设计与实现. 信息安全研究. 2023(11): 1120-1130 .
    13. 徐子钧,刘建伟,李耕. 面向5G mMTC的网络切片安全研究. 网络与信息安全学报. 2022(01): 95-105 .
    14. 苏簪铀,马振华,王志洋. 基于协同签名的电网移动GIS签名系统的设计与实现. 农村电气化. 2022(04): 50-53 .
    15. 赵秀凤,付雨. Aigis-sig方案的门限数字签名协议研究. 密码学报. 2022(05): 872-882 .
    16. 白雪,秦宝东,郭瑞,郑东. 基于SM2的两方协作盲签名协议. 网络与信息安全学报. 2022(06): 39-51 .
    17. 杨伊,何德彪,文义红,罗敏. 密钥管理服务系统下的多方协同SM4加/解密方案. 信息网络安全. 2021(08): 17-25 .
    18. 彭聪,罗敏,何德彪,黄欣沂. 基于SM2数字签名算法的适配器签名方案. 计算机研究与发展. 2021(10): 2278-2286 . 本站查看

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return