• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhou Zhiping, Zhu Shuwei, Zhang Daowen. Multiobjective Clustering Algorithm with Fuzzy Centroids for Categorical Data[J]. Journal of Computer Research and Development, 2016, 53(11): 2594-2606. DOI: 10.7544/issn1000-1239.2016.20150467
Citation: Zhou Zhiping, Zhu Shuwei, Zhang Daowen. Multiobjective Clustering Algorithm with Fuzzy Centroids for Categorical Data[J]. Journal of Computer Research and Development, 2016, 53(11): 2594-2606. DOI: 10.7544/issn1000-1239.2016.20150467

Multiobjective Clustering Algorithm with Fuzzy Centroids for Categorical Data

More Information
  • Published Date: October 31, 2016
  • It has been shown that most traditional clustering algorithms for categorical data that only optimize a single criteria suffer from some limitations, thus a novel multiobjective fuzzy clustering is proposed, which simultaneously considers within-cluster and between-cluster information. The lately reported algorithms are all based on K-modes, and the more accurate algorithm fuzzy centroids is utilized as the base algorithm to design the proposed method. Fuzzy membership is used as chromosome that is different from traditional genetic based hybrid algorithms, and a set of optimal clustering solutions can be produced by optimizing two conflicting objectives simultaneously. Meanwhile, a termination criterion in advance which can reduce unnecessary computing cost is used to judge whether the algorithm is steady or not. To further improve the efficiency of the proposed method, fuzzy centroids can be calculated using a subset of the dataset, and then the membership matrix can be calculated by these centroids to obtain the final clustering result. The experimental results of 10 datasets show that the clustering accuracy and stability of the proposed algorithm is better than the state of art multiobjective algorithm, and also the computing efficiency is improved to a large extern.
  • Related Articles

    [1]Lin Fu, Li Mingkang, Luo Xuexiong, Zhang Shuhao, Zhang Yue, Wang Zitong. Anomaly-Aware Variational Graph Autoencoder Based Graph-Level Anomaly Detection Algorithm[J]. Journal of Computer Research and Development, 2024, 61(8): 1968-1981. DOI: 10.7544/issn1000-1239.202440177
    [2]Zhao Lei, Ji Boyan, Xing Wei, Lin Huaizhong, Lin Zhijie. Ancient Painting Inpainting Algorithm Based on Multi-Channel Encoder and Dual Attention[J]. Journal of Computer Research and Development, 2023, 60(12): 2814-2831. DOI: 10.7544/issn1000-1239.202220648
    [3]Chen Kejia, Lu Hao, Zhang Jiajun. Conditional Variational Time-Series Graph Auto-Encoder[J]. Journal of Computer Research and Development, 2020, 57(8): 1663-1673. DOI: 10.7544/issn1000-1239.2020.20200202
    [4]Lan Tian, Peng Chuan, Li Sen, Ye Wenzheng, Li Meng, Hui Guoqiang, Lü Yilan, Qian Yuxin, Liu Qiao. An Overview of Monaural Speech Denoising and Dereverberation Research[J]. Journal of Computer Research and Development, 2020, 57(5): 928-953. DOI: 10.7544/issn1000-1239.2020.20190306
    [5]Chen Yarui, Jiang Shuoran, Yang Jucheng, Zhao Tingting, Zhang Chuanlei. Mixture of Variational Autoencoder[J]. Journal of Computer Research and Development, 2020, 57(1): 136-144. DOI: 10.7544/issn1000-1239.2020.20190204
    [6]Xu Shaoping, Liu Tingyun, Luo Jie, Zhang Guizhen, Tang Yiling. An Image Quality-Aware Fast Blind Denoising Algorithm for Mixed Noise[J]. Journal of Computer Research and Development, 2019, 56(11): 2458-2468. DOI: 10.7544/issn1000-1239.2019.20180617
    [7]Mao Cunli, Yu Zhengtao, Shen Tao, Gao Shengxiang, Guo Jianyi, Xian Yantuan. A Kind of Nonferrous Metal Industry Entity Recognition Model Based on Deep Neural Network Architecture[J]. Journal of Computer Research and Development, 2015, 52(11): 2451-2459. DOI: 10.7544/issn1000-1239.2015.20140808
    [8]Chen Qiang, Zheng Yuhui, Sun Quansen, Xia Deshen. Patch Similarity Based Anisotropic Diffusion for Image Denoising[J]. Journal of Computer Research and Development, 2010, 47(1): 33-42.
    [9]Xu Long, Deng Lei, Peng Xiaoming, Ji Xiangyang, Gao Wen. The VLSI Design of AVS Entropy Coder[J]. Journal of Computer Research and Development, 2009, 46(5): 881-888.
    [10]Li Yingxin and Ruan Xiaogang. Feature Selection for Cancer Classification Based on Support Vector Machine[J]. Journal of Computer Research and Development, 2005, 42(10): 1796-1801.
  • Cited by

    Periodical cited type(3)

    1. 王瑶,龙华,邵玉斌,杜庆治. 可变时长的短时广播语音多语种识别. 云南大学学报(自然科学版). 2022(03): 490-496 .
    2. 龙华,黄张衡,邵玉斌,杜庆治,苏树盟. 基于改进CFCC特征提取的语种识别算法研究. 通信学报. 2022(12): 211-221 .
    3. 邵玉斌,刘晶,龙华,杜庆治,李一民. 基于声道频谱参数的语种识别. 北京邮电大学学报. 2021(03): 112-119 .

    Other cited types(1)

Catalog

    Article views (1393) PDF downloads (528) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return