• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhou Zhiping, Zhu Shuwei, Zhang Daowen. Multiobjective Clustering Algorithm with Fuzzy Centroids for Categorical Data[J]. Journal of Computer Research and Development, 2016, 53(11): 2594-2606. DOI: 10.7544/issn1000-1239.2016.20150467
Citation: Zhou Zhiping, Zhu Shuwei, Zhang Daowen. Multiobjective Clustering Algorithm with Fuzzy Centroids for Categorical Data[J]. Journal of Computer Research and Development, 2016, 53(11): 2594-2606. DOI: 10.7544/issn1000-1239.2016.20150467

Multiobjective Clustering Algorithm with Fuzzy Centroids for Categorical Data

More Information
  • Published Date: October 31, 2016
  • It has been shown that most traditional clustering algorithms for categorical data that only optimize a single criteria suffer from some limitations, thus a novel multiobjective fuzzy clustering is proposed, which simultaneously considers within-cluster and between-cluster information. The lately reported algorithms are all based on K-modes, and the more accurate algorithm fuzzy centroids is utilized as the base algorithm to design the proposed method. Fuzzy membership is used as chromosome that is different from traditional genetic based hybrid algorithms, and a set of optimal clustering solutions can be produced by optimizing two conflicting objectives simultaneously. Meanwhile, a termination criterion in advance which can reduce unnecessary computing cost is used to judge whether the algorithm is steady or not. To further improve the efficiency of the proposed method, fuzzy centroids can be calculated using a subset of the dataset, and then the membership matrix can be calculated by these centroids to obtain the final clustering result. The experimental results of 10 datasets show that the clustering accuracy and stability of the proposed algorithm is better than the state of art multiobjective algorithm, and also the computing efficiency is improved to a large extern.
  • Related Articles

    [1]Lin Fu, Li Mingkang, Luo Xuexiong, Zhang Shuhao, Zhang Yue, Wang Zitong. Anomaly-Aware Variational Graph Autoencoder Based Graph-Level Anomaly Detection Algorithm[J]. Journal of Computer Research and Development, 2024, 61(8): 1968-1981. DOI: 10.7544/issn1000-1239.202440177
    [2]Zhao Lei, Ji Boyan, Xing Wei, Lin Huaizhong, Lin Zhijie. Ancient Painting Inpainting Algorithm Based on Multi-Channel Encoder and Dual Attention[J]. Journal of Computer Research and Development, 2023, 60(12): 2814-2831. DOI: 10.7544/issn1000-1239.202220648
    [3]Chen Kejia, Lu Hao, Zhang Jiajun. Conditional Variational Time-Series Graph Auto-Encoder[J]. Journal of Computer Research and Development, 2020, 57(8): 1663-1673. DOI: 10.7544/issn1000-1239.2020.20200202
    [4]Lan Tian, Peng Chuan, Li Sen, Ye Wenzheng, Li Meng, Hui Guoqiang, Lü Yilan, Qian Yuxin, Liu Qiao. An Overview of Monaural Speech Denoising and Dereverberation Research[J]. Journal of Computer Research and Development, 2020, 57(5): 928-953. DOI: 10.7544/issn1000-1239.2020.20190306
    [5]Chen Yarui, Jiang Shuoran, Yang Jucheng, Zhao Tingting, Zhang Chuanlei. Mixture of Variational Autoencoder[J]. Journal of Computer Research and Development, 2020, 57(1): 136-144. DOI: 10.7544/issn1000-1239.2020.20190204
    [6]Xu Shaoping, Liu Tingyun, Luo Jie, Zhang Guizhen, Tang Yiling. An Image Quality-Aware Fast Blind Denoising Algorithm for Mixed Noise[J]. Journal of Computer Research and Development, 2019, 56(11): 2458-2468. DOI: 10.7544/issn1000-1239.2019.20180617
    [7]Mao Cunli, Yu Zhengtao, Shen Tao, Gao Shengxiang, Guo Jianyi, Xian Yantuan. A Kind of Nonferrous Metal Industry Entity Recognition Model Based on Deep Neural Network Architecture[J]. Journal of Computer Research and Development, 2015, 52(11): 2451-2459. DOI: 10.7544/issn1000-1239.2015.20140808
    [8]Chen Qiang, Zheng Yuhui, Sun Quansen, Xia Deshen. Patch Similarity Based Anisotropic Diffusion for Image Denoising[J]. Journal of Computer Research and Development, 2010, 47(1): 33-42.
    [9]Xu Long, Deng Lei, Peng Xiaoming, Ji Xiangyang, Gao Wen. The VLSI Design of AVS Entropy Coder[J]. Journal of Computer Research and Development, 2009, 46(5): 881-888.
    [10]Li Yingxin and Ruan Xiaogang. Feature Selection for Cancer Classification Based on Support Vector Machine[J]. Journal of Computer Research and Development, 2005, 42(10): 1796-1801.
  • Cited by

    Periodical cited type(10)

    1. 郜晨,何升,杭骁骞. 基于申威NMII的锁死故障监测与诊断. 计算机应用研究. 2024(04): 1015-1021 .
    2. 范国炜,吴涛,刘壮. 基于新一代神威天气和气候预测系统并行优化. 计算机仿真. 2023(12): 353-358 .
    3. 陈淑平,何王全,李祎,漆锋滨. InfiniBand中面向有限多播表条目数的多播路由算法. 计算机研究与发展. 2022(04): 864-881 . 本站查看
    4. 聂婕,左子杰,黄磊,王志刚,孙正雅,仲国强,王鑫,王玉成,刘安安,张弘,董军宇,魏志强. 面向海洋的多模态智能计算:挑战、进展和展望. 中国图象图形学报. 2022(09): 2589-2610 .
    5. 张绍晴,林璘,刘才力,杨光,王兆瑛,费云龙,任倩倩,苑诗敏,倪欣宁,王一帆,刘银杏,杨浩宇,任国志,荀皓,宋睿哲,蔡金卓,杨帆,刘博文,郭锦,陈玥,卢绿,李江玉,江应境,王雪,王凯迪,王振明,于洋洋,赵浩然,王静菊,马有为,任斯敏,雍建林. 地球系统数值模拟历史回顾及未来发展之机遇与挑战. 中国海洋大学学报(自然科学版). 2022(11): 1-12 .
    6. 陈淑平,李祎,何王全,漆锋滨. 胖树拓扑中高效实用的定制多播路由算法. 计算机研究与发展. 2022(12): 2689-2707 . 本站查看
    7. 朱雨,庞建民,徐金龙,陶小涵,王军. 面向SW26010处理器的三维Stencil自适应分块参数算法. 计算机科学. 2021(06): 10-18 .
    8. 范培勤,过武宏,韩梅,唐帅,张驰. 水声环境特征参数并行预报方法研究. 计算机工程与科学. 2021(11): 1920-1925 .
    9. 庄园,郭强,张洁,曾云辉. 大规模申威众核环境下二维数据计算的可扩展方法. 计算机科学. 2020(08): 87-92 .
    10. 姜尚志,唐生林,高希然,花嵘,陈莉,刘颖. “神威·太湖之光”上Tend_lin应用的并行优化研究. 计算机工程与科学. 2020(10): 1842-1851 .

    Other cited types(7)

Catalog

    Article views (1392) PDF downloads (528) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return