• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wei Wenhong, Wang Jiahai, Tao Ming, Yuan Huaqiang. Multi-Objective Constrained Differential Evolution Using Generalized Opposition-Based Learning[J]. Journal of Computer Research and Development, 2016, 53(6): 1410-1421. DOI: 10.7544/issn1000-1239.2016.20150806
Citation: Wei Wenhong, Wang Jiahai, Tao Ming, Yuan Huaqiang. Multi-Objective Constrained Differential Evolution Using Generalized Opposition-Based Learning[J]. Journal of Computer Research and Development, 2016, 53(6): 1410-1421. DOI: 10.7544/issn1000-1239.2016.20150806

Multi-Objective Constrained Differential Evolution Using Generalized Opposition-Based Learning

More Information
  • Published Date: May 31, 2016
  • Differential evolution is a simple and efficient evolution algorithm to deal with nonlinear and complex optimization problems. Generalized opposition-based learning (GOBL) often guides population to evolve in the evolutionary computing. However, real-world problems are inherently constrained optimization problems often with multiple conflicting objectives. Hence, for resolving multi-objective constrained optimization problems, this paper proposes a constrained differential evolution algorithm using generalized opposition-based learning. In this algorithm, firstly, the transformed population is generated using general opposition-based learning in the population initialization. Secondly, the better individuals that are selected from the initial population and the transformed population using non-dominated sorting, crowding distance sorting and constraint handling techniques compose the new initial population. Lastly, based on a jumping probability, the transformed population is calculated again after generating new populations, and the fittest individuals that are selected from the union of the current population and the transformed population compose new population using the same techniques. The solution can be evolved toward Pareto front slowly according to the generalized opposition-based learning, so that the best solutions set can be found. The proposed algorithm is tested in multi-objective benchmark problems and compared with NSGA-Ⅱ, MOEA/D and other multi-objective evolution algorithms. The experimental results show that our algorithm is able to improve convergence speed and generate solutions which approximate to the best optimal Pareto front.
  • Related Articles

    [1]Li Li, Wang Wanliang, Xu Xinli, Li Weikun. Multi-Objective Particle Swarm Optimization Based on Grid Ranking[J]. Journal of Computer Research and Development, 2017, 54(5): 1012-1023. DOI: 10.7544/issn1000-1239.2017.20160074
    [2]Bi Xiaojun, Zhang Lei, Xiao Jing. Constrained Multi-Objective Optimization Algorithm Based on Dual Populations[J]. Journal of Computer Research and Development, 2015, 52(12): 2813-2823. DOI: 10.7544/issn1000-1239.2015.20148025
    [3]Zhang Yingjie, Gong Zhonghan. Hybrid Differential Evolution Gravitation Search Algorithm Based on Threshold Statistical Learning[J]. Journal of Computer Research and Development, 2014, 51(10): 2187-2194. DOI: 10.7544/issn1000-1239.2014.20130395
    [4]Bi Xiaojun, Wang Jue, Li Bo, Li Jicheng. An ε Constrained Biogeography-Based Optimization with Dynamic Migration[J]. Journal of Computer Research and Development, 2014, 51(3): 580-589.
    [5]Gong Maoguo, Cheng Gang, Jiao Licheng, and Liu Chao. Nondominated Individual Selection Strategy Based on Adaptive Partition for Evolutionary Multi-Objective Optimization[J]. Journal of Computer Research and Development, 2011, 48(4): 545-557.
    [6]Ma Hongtu, Hu Shi'an, Su Yanbing, Li Xun, Zhao Rongcai. A Multi-Variable -Function Placement Algorithm Based on Dominator Frontier Inverse[J]. Journal of Computer Research and Development, 2011, 48(2): 346-352.
    [7]Gong Wenyin and Cai Zhihua. Research on an ε-Domination Based Orthogonal Differential Evolution Algorithm for Multi-Objective Optimization[J]. Journal of Computer Research and Development, 2009, 46(4): 655-666.
    [8]Liu Chun'an, Wang Yuping. Dynamic Multi-Objective Optimization Evolutionary Algorithm Based on New Model[J]. Journal of Computer Research and Development, 2008, 45(4): 603-611.
    [9]Yang Lei and Song Tao. The Array-Based Bucket Sort Algorithm[J]. Journal of Computer Research and Development, 2007, 44(2): 341-347.
    [10]Zhang Libiao, Zhou Chunguang, Ma Ming, and Sun Caitang. A Multi-Objective Differential Evolution Algorithm Based on Max-Min Distance Density[J]. Journal of Computer Research and Development, 2007, 44(1): 177-184.

Catalog

    Article views (1539) PDF downloads (816) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return