• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Zhigang, Song Xinxia, Zhao Xiufeng. A Multi-Bit Fully Homomorphic Encryption with Better Key Size from LWE[J]. Journal of Computer Research and Development, 2016, 53(10): 2216-2223. DOI: 10.7544/issn1000-1239.2016.20160431
Citation: Chen Zhigang, Song Xinxia, Zhao Xiufeng. A Multi-Bit Fully Homomorphic Encryption with Better Key Size from LWE[J]. Journal of Computer Research and Development, 2016, 53(10): 2216-2223. DOI: 10.7544/issn1000-1239.2016.20160431

A Multi-Bit Fully Homomorphic Encryption with Better Key Size from LWE

More Information
  • Published Date: September 30, 2016
  • The efficiency of fully homomorphic encryption is a big question at present. To improve the efficiency of fully homomorphic encryption, we use the technique of packed ciphertexts to construct a multi-bit fully homomorphic encryption based on learning with errors (LWE) problem. Our scheme has a short public key. Since our fully homomorphic encryption scheme builds on the basic encryption scheme that chooses learning with errors samples from Gaussian distribution and add Gaussian error to it, which results in that the number of learning with errors samples decrease from 2n log q to n+1. We prove that our fully homomorphic encryption scheme is feasible and its security relies on the hardness of learning with errors problem. In addition, we adapt the optimization for the process of key switching from BGH13 and formal this new process of key switching for multi-bit fully homomorphic encryption. At last, we analyze the concert parameters and compare these parameters between our scheme and BGH13 scheme. The data show that our scheme has smaller public key by a factor of about log q than the one in BGH13 scheme.
  • Related Articles

    [1]Liu Runtao, Liang Jianchuang. Reverse Nearest Neighbor Query Based on New Index Structure[J]. Journal of Computer Research and Development, 2020, 57(6): 1335-1346. DOI: 10.7544/issn1000-1239.2020.20190470
    [2]Zhang Liping, Liu Lei, Hao Xiaohong, Li Song, Hao Zhongxiao. Voronoi-Based Group Reverse k Nearest Neighbor Query in Obstructed Space[J]. Journal of Computer Research and Development, 2017, 54(4): 861-871. DOI: 10.7544/issn1000-1239.2017.20151111
    [3]Zhu Huaijie, Wang Jiaying, Wang Bin, and Yang Xiaochun. Location Privacy Preserving Obstructed Nearest Neighbor Queries[J]. Journal of Computer Research and Development, 2014, 51(1): 115-125.
    [4]Yang Zexue, Hao Zhongxiao. Group Obstacle Nearest Neighbor Query in Spatial Database[J]. Journal of Computer Research and Development, 2013, 50(11): 2455-2462.
    [5]Liu Runtao, Hao Zhongxiao. Fast Algorithm of Nearest Neighbor Query for Line Segments of Spatial Database[J]. Journal of Computer Research and Development, 2011, 48(12): 2379-2384.
    [6]Zhang Xu, He Xiangnan, Jin Cheqing, and Zhou Aoying. Processing k-Nearest Neighbors Query over Uncertain Graphs[J]. Journal of Computer Research and Development, 2011, 48(10): 1871-1878.
    [7]Liao Haojun, Han Jizhong, Fang Jinyun. All-Nearest-Neighbor Queries Processing in Spatial Databases[J]. Journal of Computer Research and Development, 2011, 48(1): 86-93.
    [8]Sun Dongpu, Hao Zhongxiao. Group Nearest Neighbor Queries Based on Voronoi Diagrams[J]. Journal of Computer Research and Development, 2010, 47(7): 1244-1251.
    [9]Sun Dongpu, Hao Zhongxiao. Multi-Type Nearest Neighbor Queries with Partial Range Constrained[J]. Journal of Computer Research and Development, 2009, 46(6): 1036-1042.
    [10]Hao Zhongxiao, Wang Yudong, He Yunbin. Line Segment Nearest Neighbor Query of Spatial Database[J]. Journal of Computer Research and Development, 2008, 45(9): 1539-1545.

Catalog

    Article views (1346) PDF downloads (545) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return