• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Tao, Yu Jiong, Liao Bin, Guo Binglei, Bian Chen, Wang Yuefei, Liu Yan. The Construction and Analysis of Pass Network Graph Based on GraphX[J]. Journal of Computer Research and Development, 2016, 53(12): 2729-2752. DOI: 10.7544/issn1000-1239.2016.20160568
Citation: Zhang Tao, Yu Jiong, Liao Bin, Guo Binglei, Bian Chen, Wang Yuefei, Liu Yan. The Construction and Analysis of Pass Network Graph Based on GraphX[J]. Journal of Computer Research and Development, 2016, 53(12): 2729-2752. DOI: 10.7544/issn1000-1239.2016.20160568

The Construction and Analysis of Pass Network Graph Based on GraphX

More Information
  • Published Date: November 30, 2016
  • In the field of social networking, finance, public security, health care, etc, the application of big data technology is matured constantly, but its application in competitive sports is still in exploratory stage. Lacking of recording the pass data in basketball technical statistics leads that we can not research the statistical analysis, data mining and application on the pass data. Firstly, as the aggregation from of passing data is graph, based on data acquisition, clean and format conversion, Vertex and Edge table construction, we create the pass network graph with GraphX, which lays the foundation for other applications. Secondly, the PlayerRank algorithm is proposed to distinguish the importance of players, player position personalized the graph vertex’s color, etc, which improves the visual quality of pass network graph. Finally, we can use the pass network graph created by GraphX to analyze the effect of passing quantity and quality on the outcome of the game, and the pass network graph is also used to analyze the team’s passing data, tactical player selection, on-the-spot tactics supporting, subgraph extraction and gaming experience improvement, etc.
  • Related Articles

    [1]Zhang Yuhong, Zhi Wenwu, Li Peipei, Hu Xuegang. Semi-Supervised Method for Cross-Lingual Word Embedding Based on an Adversarial Model with Double Discriminators[J]. Journal of Computer Research and Development, 2023, 60(9): 2127-2136. DOI: 10.7544/issn1000-1239.202220036
    [2]Liu Jiefang, Wang Shitong, Wang Jun, Deng Zhaohong. Core Vector Regression for Attribute Effect Control on Large Scale Dataset[J]. Journal of Computer Research and Development, 2017, 54(9): 1979-1991. DOI: 10.7544/issn1000-1239.2017.20160519
    [3]Shu Jian, Tang Jin, Liu Linlan, Hu Gang, Liu Song. Fuzzy Support Vector Regression-Based Link Quality Prediction Model for Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2015, 52(8): 1842-1851. DOI: 10.7544/issn1000-1239.2015.20140670
    [4]Huang Huajuan, Ding Shifei, Shi Zhongzhi. Smooth CHKS Twin Support Vector Regression[J]. Journal of Computer Research and Development, 2015, 52(3): 561-568. DOI: 10.7544/issn1000-1239.2015.20131444
    [5]Yang Chunfang, Liu Fenlin, and Luo Xiangyang. Histograms Difference and Quantitative Steganalysis of JPEG Steganography Based on Relative Entropy[J]. Journal of Computer Research and Development, 2011, 48(8): 1563-1569.
    [6]Xiong Jinzhi, Xu Jianmin, and Yuan Huaqiang. Convergenceness of a General Formulation for Polynomial Smooth Support Vector Regressions[J]. Journal of Computer Research and Development, 2011, 48(3): 464-470.
    [7]Zeng Fanzi, Liang Zhenhua, and Li Renfa. An Approach to Mobile Position Tracking Based on Support Vector Regression and Game Theory[J]. Journal of Computer Research and Development, 2010, 47(10): 1709-1713.
    [8]Ling Ping, Wang Zhe, Zhou Chunguang, Huang Lan. Reduced Support Vector Clustering[J]. Journal of Computer Research and Development, 2010, 47(8): 1372-1381.
    [9]Qiao Lishan, Chen Songcan, Wang Min. Image Thresholding Based on Relevance Vector Machine[J]. Journal of Computer Research and Development, 2010, 47(8): 1329-1337.
    [10]Liu Xiangdong, Luo Bin, and Chen Zhaoqian. Optimal Model Selection for Support Vector Machines[J]. Journal of Computer Research and Development, 2005, 42(4): 576-581.
  • Cited by

    Periodical cited type(2)

    1. 刘梦君,蒋新宇,石斯瑾,江南,吴笛. 人工智能教育融合安全警示:来自机器学习算法功能的原生风险分析. 江南大学学报(人文社会科学版). 2022(05): 89-101 .
    2. 刘波涛,彭长根,吴睿雪,丁红发,谢明明. 面向数字型的轻量级保形加密算法研究. 计算机研究与发展. 2019(07): 1488-1497 . 本站查看

    Other cited types(4)

Catalog

    Article views (1502) PDF downloads (742) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return