• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhu Mengying, Zheng Xiaolin, Wang Chaohui. Investment Recommendation Based on Risk and Surplus in P2P Lending[J]. Journal of Computer Research and Development, 2016, 53(12): 2708-2720. DOI: 10.7544/issn1000-1239.2016.20160608
Citation: Zhu Mengying, Zheng Xiaolin, Wang Chaohui. Investment Recommendation Based on Risk and Surplus in P2P Lending[J]. Journal of Computer Research and Development, 2016, 53(12): 2708-2720. DOI: 10.7544/issn1000-1239.2016.20160608

Investment Recommendation Based on Risk and Surplus in P2P Lending

More Information
  • Published Date: November 30, 2016
  • Online peer-to-peer (P2P) lending, which is a newly personal wealth distribution and management system, has become a new type of financing mode for Internet users. P2P lending platform allows borrowers to create borrow listing and investors to bid and invest borrowers’ listing directly. In the P2P lending, there is a significant issue that is how to reasonably match borrowers and investors and then allocate the amount of investors, so as to recommend low risk and high rate investment decisions to the investors. This paper proposes a recommendation framework risk based total surplus risk total surplus maximize (RTSM), which can solve the problem of allocating the investment amount into borrowers’ listings. Specifically, we first propose to adapt various methods of regression to evaluate default risk. Then, we give the hypothesis the surplus of investors and borrowers under default risk which is based on the theory of surplus in economics. And based on this hypothesis, we combine the risk assessment and investment recommendation to maximize the total surplus under default risk. We apply the recommendation framework RTSM into two real-world datasets (Prosper and PPDai). Finally, experiments and analysis indicate that RTSM can reduce risk and improve the overall benefits of both investors and borrowers.
  • Related Articles

    [1]Peng Yingtao, Meng Xiaofeng, Du Zhijuan. Survey on Diversified Recommendation[J]. Journal of Computer Research and Development, 2025, 62(2): 285-313. DOI: 10.7544/issn1000-1239.202330600
    [2]Huang Ling, Huang Zhenwei, Huang Ziyuan, Guan Canrong, Gao Yuefang, Wang Changdong. Graph Convolutional Broad Cross-Domain Recommender System[J]. Journal of Computer Research and Development, 2024, 61(7): 1713-1729. DOI: 10.7544/issn1000-1239.202330617
    [3]Gao Yunfan, Yu Dongqing, Wang Siqi, Wang Haofen. Large Language Model Powered Site Selection Recommender System[J]. Journal of Computer Research and Development, 2024, 61(7): 1681-1696. DOI: 10.7544/issn1000-1239.202330629
    [4]Xie Minhui, Lu Youyou, Feng Yangyang, Shu Jiwu. A Recommendation Model Inference System Based on GPU Direct Storage Access Architecture[J]. Journal of Computer Research and Development, 2024, 61(3): 589-599. DOI: 10.7544/issn1000-1239.202330402
    [5]Zhu Haiping, Zhao Chengcheng, Liu Qidong, Zheng Qinghua, Zeng Jiangwei, Tian Feng, Chen Yan. Reciprocal-Constrained Interpretable Job Recommendation[J]. Journal of Computer Research and Development, 2021, 58(12): 2660-2672. DOI: 10.7544/issn1000-1239.2021.20211008
    [6]Shi Cunhui, Hu Yaokang, Feng Bin, Zhang Jin, Yu Xiaoming, Liu Yue, Cheng Xueqi. A Hierarchical Knowledge Based Topic Recommendation Method in Public Opinion Scenario[J]. Journal of Computer Research and Development, 2021, 58(8): 1811-1819. DOI: 10.7544/issn1000-1239.2021.20190749
    [7]Zheng Zhi, Xu Tong, Qin Chuan, Liao Xiangwen, Zheng Yi, Liu Tongzhu, Tong Guixian. Multi-Source Contextual Collaborative Recommendation for Medicine[J]. Journal of Computer Research and Development, 2020, 57(8): 1741-1754. DOI: 10.7544/issn1000-1239.2020.20200149
    [8]Zhou Jun, Dong Xiaolei, Cao Zhenfu. Research Advances on Privacy Preserving in Recommender Systems[J]. Journal of Computer Research and Development, 2019, 56(10): 2033-2048. DOI: 10.7544/issn1000-1239.2019.20190541
    [9]Wan Changxuan, You Yun, Jiang Tengjiao, Liu Xiping, Liao Guoqiong, Liu Dexi. Personalized Investment Recommendation in P2P Lending Considering Friend Relationships and Expected Utilities of Investors[J]. Journal of Computer Research and Development, 2018, 55(10): 2307-2320. DOI: 10.7544/issn1000-1239.2018.20170632
    [10]Zhang Wei, Han Linyu, Zhang Dianlei, Ren Pengjie, Ma Jun, Chen Zhumin. GeoPMF: A Distance-Aware Tour Recommendation Model[J]. Journal of Computer Research and Development, 2017, 54(2): 405-414. DOI: 10.7544/issn1000-1239.2017.20150822
  • Cited by

    Periodical cited type(9)

    1. 陈彩华,佘程熙,王庆阳. 可信机器学习综述. 工业工程. 2024(02): 14-26 .
    2. 饶高琦,周立炜. 论语言智能的治理. 语言战略研究. 2024(03): 38-48 .
    3. 穆春阳,李闯,马行,刘永鹿,杨科,刘宝成. 改进YOLOv7-tiny的轻量化大型铸件焊缝缺陷检测. 组合机床与自动化加工技术. 2024(07): 156-160 .
    4. 喻继军,熊明华. 电子商务推荐系统公平性研究进展. 现代信息科技. 2023(14): 115-124 .
    5. 范卓娅,孟小峰. 算法公平与公平计算. 计算机研究与发展. 2023(09): 2048-2066 . 本站查看
    6. 吴雷,杜文研,林超然. 基于专利数据应用LDA和N-BEATS组合方法的技术主题预测研究. 数字图书馆论坛. 2023(11): 62-73 .
    7. 古天龙,李龙,常亮,罗义琴. 公平机器学习:概念、分析与设计. 计算机学报. 2022(05): 1018-1051 .
    8. 王文鑫,张健毅. 联邦学习公平性研究综述. 北京电子科技学院学报. 2022(02): 122-134 .
    9. 郁建兴,刘宇轩. 社会治理中的深度学习算法公平性. 信息技术与管理应用. 2022(01): 17-27 .

    Other cited types(12)

Catalog

    Article views (1333) PDF downloads (678) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return