• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tian Chiyuan, Chen Dehua, Wang Mei, Le Jiajin. Structured Processing for Pathological Reports Based on Dependency Parsing[J]. Journal of Computer Research and Development, 2016, 53(12): 2669-2680. DOI: 10.7544/issn1000-1239.2016.20160611
Citation: Tian Chiyuan, Chen Dehua, Wang Mei, Le Jiajin. Structured Processing for Pathological Reports Based on Dependency Parsing[J]. Journal of Computer Research and Development, 2016, 53(12): 2669-2680. DOI: 10.7544/issn1000-1239.2016.20160611

Structured Processing for Pathological Reports Based on Dependency Parsing

More Information
  • Published Date: November 30, 2016
  • Most of pathological reports are unstructured texts which can not be directly analyzed by computers. The current researches on structured texts mainly focus on the information extraction. However, the syntactic features of pathological reports are particular, which makes it more difficult to extract information relations. To solve this problem, a novel method of structuralizing pathological reports based on syntactic and semantic features is proposed in this paper. First of all, we construct a synonym lexicon by using neural network language models to eliminate the phenomenon of synonymy. Then the dependency trees are generated based on the preprocessed pathological reports to extract medical examination indices. Meanwhile, we use short-sentence segmentation and annotation as optimized strategies to simplify the structure of dependency trees, which makes the grammatical relations of medical texts clearer and improves the quality of the structured results. Finally the key-value pairs of medical examination indices can be extracted from pathological reports in Chinese, and the structured texts can be generated automatically. Experimental results based on real pathological report data sets show that the performance of the proposed method on medical indices and values extraction achieves 82.91% and 79.11% of accuracy, which provides a solid foundation for related studies in the future.
  • Related Articles

    [1]Wei Jia, Zhang Xingjun, Wang Longxiang, Zhao Mingqiang, Dong Xiaoshe. MC2 Energy Consumption Model for Massively Distributed Data Parallel Training of Deep Neural Network[J]. Journal of Computer Research and Development, 2024, 61(12): 2985-3004. DOI: 10.7544/issn1000-1239.202330164
    [2]Jin Biao, Lin Xiang, Xiong Jinbo, You Weijing, Li Xuan, Yao Zhiqiang. Intellectual Property Protection of Deep Neural Network Models Based on Watermarking Technology[J]. Journal of Computer Research and Development, 2024, 61(10): 2587-2606. DOI: 10.7544/issn1000-1239.202440413
    [3]Shu Wentao, Li Ruixiao, Sun Tianxiang, Huang Xuanjing, Qiu Xipeng. Large Language Models: Principles, Implementation, and Progress[J]. Journal of Computer Research and Development, 2024, 61(2): 351-361. DOI: 10.7544/issn1000-1239.202330303
    [4]Ma Shuai, Liu Jianwei, Zuo Xin. Survey on Graph Neural Network[J]. Journal of Computer Research and Development, 2022, 59(1): 47-80. DOI: 10.7544/issn1000-1239.20201055
    [5]Chen Ke, Liang Bin, Ke Wende, Xu Bo, Zeng Guochao. Chinese Micro-Blog Sentiment Analysis Based on Multi-Channels Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(5): 945-957. DOI: 10.7544/issn1000-1239.2018.20170049
    [6]Chen Zhiming, Li Maoxi, Wang Mingwen. Sentence-Level Machine Translation Quality Estimation Based on Neural Network Features[J]. Journal of Computer Research and Development, 2017, 54(8): 1804-1812. DOI: 10.7544/issn1000-1239.2017.20170182
    [7]Fan Zhengguang, Qu Dan, Yan Honggang, Zhang Wenlin. Joint Acoustic Modeling of Multi-Features Based on Deep Neural Networks[J]. Journal of Computer Research and Development, 2017, 54(5): 1036-1044. DOI: 10.7544/issn1000-1239.2017.20160031
    [8]Li Panchi, Zhou Hongyan. Model and Algorithm of Quantum Neural Network Based on the Controlled Hadamard Gates[J]. Journal of Computer Research and Development, 2015, 52(1): 211-220. DOI: 10.7544/issn1000-1239.2015.20131016
    [9]Li Yaxiong, Zhang Jianqiang, Pan Deng, Hu Dan. A Study of Speech Recognition Based on RNN-RBM Language Model[J]. Journal of Computer Research and Development, 2014, 51(9): 1936-1944. DOI: 10.7544/issn1000-1239.2014.20140211
    [10]Ma Liang, Chen Qunxiu, and Cai Lianhong. An Improved Model for Adaptive Text Information Filtering[J]. Journal of Computer Research and Development, 2005, 42(1): 79-84.

Catalog

    Article views (1593) PDF downloads (933) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return