• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Deng Xiaoheng, Cao Dejuan, Pan Yan, Shen Hailan, Chen Zhigang. An Optimized Credit Distribution Model in Social Networks with Time-Delay Constraint[J]. Journal of Computer Research and Development, 2017, 54(2): 382-393. DOI: 10.7544/issn1000-1239.2017.20151118
Citation: Deng Xiaoheng, Cao Dejuan, Pan Yan, Shen Hailan, Chen Zhigang. An Optimized Credit Distribution Model in Social Networks with Time-Delay Constraint[J]. Journal of Computer Research and Development, 2017, 54(2): 382-393. DOI: 10.7544/issn1000-1239.2017.20151118

An Optimized Credit Distribution Model in Social Networks with Time-Delay Constraint

More Information
  • Published Date: January 31, 2017
  • The research of influence maximization in social networks is emerging as a promising opportunity for successful viral marketing. Influence maximization with time-delay constraint (IMTC) is to identify a set of initial individuals who will influence others and lead to a maximum value of influence spread consequence under time-delay constraint. Most of the existing models focus on optimizing the simulation consequence of influence spread, and time-delay factors and time-delay constraint are always ignored. The credit distribution with time-delay constraint model (CDTC) incorporates the meeting and activation probabilities to optimize the distribution of credit considering time-delay constraint, and utilizes the optimized relationships of meeting and activation probabilities to evaluate the ability to influence on adjacent individuals. Furthermore, the obstructive effect due to repeated attempts of meeting and activation is reflected by the length of increased propagation paths. After assigning the credit along with the increased propagation paths learned from users action-logs, the nodes which obtain maximal marginal gain are selected to form the seed set by the greedy algorithm with time-delay constraint (GA-TC). The experimental results based on real datasets show that the proposed approach is more accurate and efficient compared with other related methods.
  • Related Articles

    [1]Zhang Wenjun, Jiang Liangxiao, Zhang Huan, Chen Long. A Two-Layer Bayes Model: Random Forest Naive Bayes[J]. Journal of Computer Research and Development, 2021, 58(9): 2040-2051. DOI: 10.7544/issn1000-1239.2021.20200521
    [2]Wang Fei, Yue Kun, Sun Zhengbao, Wu Hao, Feng Hui. Analyzing Rating Data and Modeling Dynamic Behaviors of Users Based on the Bayesian Network[J]. Journal of Computer Research and Development, 2017, 54(7): 1488-1499. DOI: 10.7544/issn1000-1239.2017.20160556
    [3]Zhu Kenan, Yin Baolin, Mao Yaming, Hu Yingnan. Malware Classification Approach Based on Valid Window and Naive Bayes[J]. Journal of Computer Research and Development, 2014, 51(2): 373-381.
    [4]Wang Mei, Liao Shizhong. Three-Step Bayesian Combination of SVM on Regularization Path[J]. Journal of Computer Research and Development, 2013, 50(9): 1855-1864.
    [5]Si Guannan, Ren Yuhan, Xu Jing, and Yang Jufeng. A Dependability Evaluation Model for Internetware Based on Bayesian Network[J]. Journal of Computer Research and Development, 2012, 49(5): 1028-1038.
    [6]Tian Junfeng and Tian Rui. A Fine-Grain Trust Model Based on Domain and Bayesian Network for P2P E-Commerce System[J]. Journal of Computer Research and Development, 2011, 48(6): 974-982.
    [7]Zhu Mingfang, Tang Changjie, Dai Shucheng, Chen Yu, Qiao Shaojie, Xiang Yong. Nave Gene Expression Programming Based on Genetic Neutrality[J]. Journal of Computer Research and Development, 2010, 47(2): 292-299.
    [8]Qian Ning, Wu Guoxin, and Zhao Shenghui. A Bayesian Network-Based Search Method in Unstructured Peer-to-Peer Networks[J]. Journal of Computer Research and Development, 2009, 46(6): 889-897.
    [9]Miao Duoqian, Wang Ruizhi, and Ran Wei. A Dynamic Bayesian Network Based Framework for Continuous Speech Recognition and its Token Passing Model[J]. Journal of Computer Research and Development, 2008, 45(11): 1882-1891.
    [10]Xu Junming, Jiang Yuan, and Zhou Zhihua. Bayesian Classifier Based on Frequent Item Sets Mining[J]. Journal of Computer Research and Development, 2007, 44(8): 1293-1300.

Catalog

    Article views (1048) PDF downloads (474) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return