• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Feng, Miao Duoqian, Zhang Zhifei, Zhang Wei. Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning[J]. Journal of Computer Research and Development, 2017, 54(5): 1024-1035. DOI: 10.7544/issn1000-1239.2017.20160351
Citation: Li Feng, Miao Duoqian, Zhang Zhifei, Zhang Wei. Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning[J]. Journal of Computer Research and Development, 2017, 54(5): 1024-1035. DOI: 10.7544/issn1000-1239.2017.20160351

Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning

More Information
  • Published Date: April 30, 2017
  • All features contribute equally to compute the distance between any pair of instances when finding the nearest neighbors in traditional kNN based multi-label learning algorithms. Furthermore, most of these algorithms transform the multi-label problem into a set of single-label binary problems, which ignore the label correlation. The performance of multi-label learning algorithm greatly depends on the input features, and different features contain different knowledge about the label classification, so the features should be given different importance. Mutual information is one of the widely used measures of dependency of variables, and can evaluate the knowledge contained in the feature about the label classification. Therefore, we propose a granular feature weighted k-nearest neighbors algorithm for multi-label learning based on mutual information, which gives the feature weights according to the knowledge contained in the feature. The proposed algorithm firstly granulates the label space into several label information granules to avoid the problem of label combination explosion problem, and then calculates feature weights for each label information granule, which takes label combinations into consideration to merge label correlations into feature weights. The experimental results show that the proposed algorithm can achieve better performance than other common multi-label learning algorithms.
  • Related Articles

    [1]Wang Ling, Zhou Nan, Shen Peng. Time Series Anomaly Pattern Recognition Based on Adaptive k Nearest Neighbor[J]. Journal of Computer Research and Development, 2023, 60(1): 125-139. DOI: 10.7544/issn1000-1239.202111062
    [2]Zhang Xiaojian, Xu Yaxin, Meng Xiaofeng. Approximate k-Nearest Neighbor Queries of Spatial Data Under Local Differential Privacy[J]. Journal of Computer Research and Development, 2022, 59(7): 1610-1624. DOI: 10.7544/issn1000-1239.20210397
    [3]Li Song, Hu Yanming, Hao Xiaohong, Zhang Liping, Hao Zhongxiao. Approximate k-Nearest Neighbor Query of High Dimensional Data Based on Dimension Grouping and Reducing[J]. Journal of Computer Research and Development, 2021, 58(3): 609-623. DOI: 10.7544/issn1000-1239.2021.20200285
    [4]Chen Yuming, Li Wei. Granular Vectors and K Nearest Neighbor Granular Classifiers[J]. Journal of Computer Research and Development, 2019, 56(12): 2600-2611. DOI: 10.7544/issn1000-1239.2019.20180572
    [5]Zhang Liping, Liu Lei, Hao Xiaohong, Li Song, Hao Zhongxiao. Voronoi-Based Group Reverse k Nearest Neighbor Query in Obstructed Space[J]. Journal of Computer Research and Development, 2017, 54(4): 861-871. DOI: 10.7544/issn1000-1239.2017.20151111
    [6]Yang Liu, Yu Jian, Jing Liping. An Adaptive Large Margin Nearest Neighbor Classification Algorithm[J]. Journal of Computer Research and Development, 2013, 50(11): 2269-2277.
    [7]Zhang Xu, He Xiangnan, Jin Cheqing, and Zhou Aoying. Processing k-Nearest Neighbors Query over Uncertain Graphs[J]. Journal of Computer Research and Development, 2011, 48(10): 1871-1878.
    [8]Xu Yajun, Wang Chaokun, Shi Wei, Pan Peng, Wei Dongmei. k'/k-Dominant Skyline Query over Multiple Time Series[J]. Journal of Computer Research and Development, 2011, 48(10): 1859-1870.
    [9]Xu Hongbo, Hao Zhongxiao. An Approximate k-Closest Pair Query Algorithm Based on Z Curve[J]. Journal of Computer Research and Development, 2008, 45(2): 310-317.
    [10]Zhuang Yi, Zhuang Yueting, and Wu Fei. k Nearest Neighbor Queries Based on Data Grid[J]. Journal of Computer Research and Development, 2006, 43(11): 1876-1885.

Catalog

    Article views (1301) PDF downloads (938) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return