• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Yingjie, Zhang Liqun, Kang Jian, Wang Yilei. An Algorithm for Differential Privacy Streaming Data Adaptive Publication[J]. Journal of Computer Research and Development, 2017, 54(12): 2805-2817. DOI: 10.7544/issn1000-1239.2017.20160555
Citation: Wu Yingjie, Zhang Liqun, Kang Jian, Wang Yilei. An Algorithm for Differential Privacy Streaming Data Adaptive Publication[J]. Journal of Computer Research and Development, 2017, 54(12): 2805-2817. DOI: 10.7544/issn1000-1239.2017.20160555

An Algorithm for Differential Privacy Streaming Data Adaptive Publication

More Information
  • Published Date: November 30, 2017
  • Nowadays, many practical applications need to publish streaming data continuously. Most of existing research works for differential privacy single streaming data publication focus on range accumulation. However, many practical scenarios need to answer arbitrary range counting queries of streaming data. At the same time, there exist specific rules of queries from users, so adaptive analysis and calculation for historical queries should be concerned. To improve the usability of published data, an algorithm HQ_DPASP for differential privacy streaming data adaptive publication based on historical queries is proposed. Combining the characteristics of streaming data, HQ_DPASP firstly uses the sliding window mechanism to construct the differential privacy range tree of the streaming data dynamically. Secondly, by analyzing the coverage probability of tree nodes and calculating the privacy parameters from leaves to root, HQ_DPASP allocates privacy budget from root to leaves and adds non-uniform noise on tree nodes. Finally, the privacy budget of tree nodes and tree's parameters are adjusted adaptively based on the characteristic of historical queries. Experiments are designed for testing the feasibility and effectiveness of HQ_DPSAP. The results show that HQ_DPSAP is effective in answering arbitrary range counting queries on the published streaming data while assuring low mean squared error of queries and high algorithm efficiency.
  • Related Articles

    [1]Zhang Wenjun, Jiang Liangxiao, Zhang Huan, Chen Long. A Two-Layer Bayes Model: Random Forest Naive Bayes[J]. Journal of Computer Research and Development, 2021, 58(9): 2040-2051. DOI: 10.7544/issn1000-1239.2021.20200521
    [2]Wang Fei, Yue Kun, Sun Zhengbao, Wu Hao, Feng Hui. Analyzing Rating Data and Modeling Dynamic Behaviors of Users Based on the Bayesian Network[J]. Journal of Computer Research and Development, 2017, 54(7): 1488-1499. DOI: 10.7544/issn1000-1239.2017.20160556
    [3]Zhu Kenan, Yin Baolin, Mao Yaming, Hu Yingnan. Malware Classification Approach Based on Valid Window and Naive Bayes[J]. Journal of Computer Research and Development, 2014, 51(2): 373-381.
    [4]Wang Mei, Liao Shizhong. Three-Step Bayesian Combination of SVM on Regularization Path[J]. Journal of Computer Research and Development, 2013, 50(9): 1855-1864.
    [5]Si Guannan, Ren Yuhan, Xu Jing, and Yang Jufeng. A Dependability Evaluation Model for Internetware Based on Bayesian Network[J]. Journal of Computer Research and Development, 2012, 49(5): 1028-1038.
    [6]Tian Junfeng and Tian Rui. A Fine-Grain Trust Model Based on Domain and Bayesian Network for P2P E-Commerce System[J]. Journal of Computer Research and Development, 2011, 48(6): 974-982.
    [7]Zhu Mingfang, Tang Changjie, Dai Shucheng, Chen Yu, Qiao Shaojie, Xiang Yong. Nave Gene Expression Programming Based on Genetic Neutrality[J]. Journal of Computer Research and Development, 2010, 47(2): 292-299.
    [8]Qian Ning, Wu Guoxin, and Zhao Shenghui. A Bayesian Network-Based Search Method in Unstructured Peer-to-Peer Networks[J]. Journal of Computer Research and Development, 2009, 46(6): 889-897.
    [9]Miao Duoqian, Wang Ruizhi, and Ran Wei. A Dynamic Bayesian Network Based Framework for Continuous Speech Recognition and its Token Passing Model[J]. Journal of Computer Research and Development, 2008, 45(11): 1882-1891.
    [10]Xu Junming, Jiang Yuan, and Zhou Zhihua. Bayesian Classifier Based on Frequent Item Sets Mining[J]. Journal of Computer Research and Development, 2007, 44(8): 1293-1300.

Catalog

    Article views (1346) PDF downloads (547) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return