• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Cheng Yaodong, Zhang Xiao, Wang Peijian, Zha Li, Hou Di, Qi Yong, Ma Can. Data Management Challenges and Event Index Technologies in High Energy Physics[J]. Journal of Computer Research and Development, 2017, 54(2): 258-266. DOI: 10.7544/issn1000-1239.2017.20160939
Citation: Cheng Yaodong, Zhang Xiao, Wang Peijian, Zha Li, Hou Di, Qi Yong, Ma Can. Data Management Challenges and Event Index Technologies in High Energy Physics[J]. Journal of Computer Research and Development, 2017, 54(2): 258-266. DOI: 10.7544/issn1000-1239.2017.20160939

Data Management Challenges and Event Index Technologies in High Energy Physics

More Information
  • Published Date: January 31, 2017
  • Nowadays, more and more scientific data has been produced by new generation high energy physics facilities. The scale of the data can be achieved to PB or EB level even by one experiment, which brings big challenges to data management technologies such as data acquisition, storage, transmission,sharing, analyzing and processing. Event is the basic data unit of high energy physics, and one large high energy physics experiment can produce trillions of events. The traditional high energy physical data processing technology adopts file as a basic data management unit, and each file contains thousands of events. The benefit of file-based method is to simplify the complexity of data management system. However, one physical analysis task is only interested in very few events, which leads to some problems including transferring too much redundant data, I/O bottleneck and low efficiency of data processing. To solve these problems, this paper proposes an event-oriented high energy physical data management method, which focuses on high efficiency indexing technology of massive events. In this method, event data is still stored in ROOT file while a large amount of events are indexed by some specified properties and stored in NoSQL database. Finally,experimental test results show the feasibility of the method, and optimized HBase system can meet the requirements of event index.
  • Related Articles

    [1]Liu Yongzhi, Qin Guiyun, Liu Pengtao, Hu Chengyu, Guo Shanqing. Provably Secure Public Key Authenticated Encryption with Keyword Search Based on SGX[J]. Journal of Computer Research and Development, 2023, 60(12): 2709-2724. DOI: 10.7544/issn1000-1239.202220478
    [2]Guo Sixu, He Shen, Su Li, Zhang Xing, Zhou Fucai, Zhang Xinyue. Top-k Boolean Searchable Encryption Scheme Based on Multiple Keywords[J]. Journal of Computer Research and Development, 2022, 59(8): 1841-1852. DOI: 10.7544/issn1000-1239.20200605
    [3]Yang Ningbin, Zhou Quan, Xu Shumei. Public-Key Authenticated Encryption with Keyword Search Without Pairings[J]. Journal of Computer Research and Development, 2020, 57(10): 2125-2135. DOI: 10.7544/issn1000-1239.2020.20200318
    [4]Guo Lifeng, Li Zhihao, Hu Lei. Efficient Public Encryption Scheme with Keyword Search for Cloud Storage[J]. Journal of Computer Research and Development, 2020, 57(7): 1404-1414. DOI: 10.7544/issn1000-1239.2020.20190671
    [5]Xu Guangwei, Shi Chunhong, Wang Wentao, Pan Qiao, Li Feng. Multi-Keyword Searchable Encryption Algorithm Based on Semantic Extension[J]. Journal of Computer Research and Development, 2019, 56(10): 2193-2206. DOI: 10.7544/issn1000-1239.2019.20190378
    [6]Li Yuxi, Zhou Fucai, Xu Jian, Xu Zifeng. Multiple-Keyword Encrypted Search with Relevance Ranking on Dual-Server Model[J]. Journal of Computer Research and Development, 2018, 55(10): 2149-2163. DOI: 10.7544/issn1000-1239.2018.20180433
    [7]Chen Dongdong, Cao Zhenfu, Dong Xiaolei. Online/Offline Ciphertext-Policy Attribute-Based Searchable Encryption[J]. Journal of Computer Research and Development, 2016, 53(10): 2365-2375. DOI: 10.7544/issn1000-1239.2016.20160416
    [8]Han Jun, Fan Ju, Zhou Lizhu. Semantic-Enhanced Spatial Keyword Search[J]. Journal of Computer Research and Development, 2015, 52(9): 1954-1964. DOI: 10.7544/issn1000-1239.2015.20140686
    [9]Guo Lifeng and Lu Bo. Efficient Proxy Re-encryption with Keyword Search Scheme[J]. Journal of Computer Research and Development, 2014, 51(6): 1221-1228.
    [10]Tang Mingzhu, Yang Yan, Guo Xuequan, Shen Zhonghui, Zhong Yingli. KWSDS: A Top-k Keyword Search System in Relational Databases[J]. Journal of Computer Research and Development, 2012, 49(10): 2251-2259.

Catalog

    Article views (1438) PDF downloads (802) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return