• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Hu Qing, Lü Shichao, Shi Zhiqiang, Sun Limin, Xiao Liang. Advanced Persistent Threats Detection Game with Expert System for Cloud[J]. Journal of Computer Research and Development, 2017, 54(10): 2344-2355. DOI: 10.7544/issn1000-1239.2017.20170433
Citation: Hu Qing, Lü Shichao, Shi Zhiqiang, Sun Limin, Xiao Liang. Advanced Persistent Threats Detection Game with Expert System for Cloud[J]. Journal of Computer Research and Development, 2017, 54(10): 2344-2355. DOI: 10.7544/issn1000-1239.2017.20170433

Advanced Persistent Threats Detection Game with Expert System for Cloud

More Information
  • Published Date: September 30, 2017
  • Cloud computing systems are under threaten of advanced persistent threats (APT). It is hard for an autonomous detector to discover APT attacks accurately. The expert system (ES)can help to reduce detection errors via double-checking suspicious behaviors. However, it takes an extended period of time for the ES to recheck, which may lead to a defense delay. Besides, the ES makes mistakes too. In this paper, we discuss the necessity of the ES to participate in APT detection and defense for a cloud computing system by game theory, based on the consideration of miss detection rates and false alarm rates of both the APT detector and the ES. The ES-based APT detection method is designed, and the ES-APT game between an APT attacker and a defender is formulated. We derive its Nash equilibrium and analyze how the ES enhances the security of the cloud computing system. Also, the dynamic game is studied, in case that the APT attack model is unknowable. We present a reinforcement learning scheme for the cloud computing system with ES to get the optimal strategy. Simulation results show that, with the knowledge of the ES, both the defenders utility and the cloud computing systems security are improved compared with benchmark schemes.
  • Related Articles

    [1]Ge Zhenxing, Xiang Shuai, Tian Pinzhuo, Gao Yang. Solving GuanDan Poker Games with Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2024, 61(1): 145-155. DOI: 10.7544/issn1000-1239.202220697
    [2]Zeng Junjie, Qin Long, Xu Haotian, Zhang Qi, Hu Yue, Yin Quanjun. Exploration Approaches in Deep Reinforcement Learning Based on Intrinsic Motivation: A Review[J]. Journal of Computer Research and Development, 2023, 60(10): 2359-2382. DOI: 10.7544/issn1000-1239.202220388
    [3]Gu Tianlong, Gao Hui, Li Long, Bao Xuguang, Li Yunhui. An Approach for Training Moral Agents via Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(9): 2039-2050. DOI: 10.7544/issn1000-1239.20210474
    [4]Ma Ang, Yu Yanhua, Yang Shengli, Shi Chuan, Li Jie, Cai Xiuxiu. Survey of Knowledge Graph Based on Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(8): 1694-1722. DOI: 10.7544/issn1000-1239.20211264
    [5]Sun Penghao, Lan Julong, Shen Juan, Hu Yuxiang. Pinning Control-Based Routing Policy Generation Using Deep Reinforcement Learning[J]. Journal of Computer Research and Development, 2021, 58(7): 1563-1572. DOI: 10.7544/issn1000-1239.2021.20200018
    [6]Qi Faxin, Tong Xiangrong, Yu Lei. Agent Trust Boost via Reinforcement Learning DQN[J]. Journal of Computer Research and Development, 2020, 57(6): 1227-1238. DOI: 10.7544/issn1000-1239.2020.20190403
    [7]Zhang Wentao, Wang Lu, Cheng Yaodong. Performance Optimization of Lustre File System Based on Reinforcement Learning[J]. Journal of Computer Research and Development, 2019, 56(7): 1578-1586. DOI: 10.7544/issn1000-1239.2019.20180797
    [8]Zhang Kaifeng, Yu Yang. Methodologies for Imitation Learning via Inverse Reinforcement Learning: A Review[J]. Journal of Computer Research and Development, 2019, 56(2): 254-261. DOI: 10.7544/issn1000-1239.2019.20170578
    [9]Lin Fen, Shi Chuan, Luo Jiewen, Shi Zhongzhi. Dual Reinforcement Learning Based on Bias Learning[J]. Journal of Computer Research and Development, 2008, 45(9): 1455-1462.
    [10]Shi Chuan, Shi Zhongzhi, Wang Maoguang. Online Hierarchical Reinforcement Learning Based on Path-matching[J]. Journal of Computer Research and Development, 2008, 45(9).

Catalog

    Article views (1421) PDF downloads (849) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return