• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Yu, Liu Zhongjin, Zhao Weiwei, Ma Yuan, Shi Zhiqiang, Sun Limin. A Large-Scale Cross-Platform Homologous Binary Retrieval Method[J]. Journal of Computer Research and Development, 2018, 55(7): 1498-1507. DOI: 10.7544/issn1000-1239.2018.20180078
Citation: Chen Yu, Liu Zhongjin, Zhao Weiwei, Ma Yuan, Shi Zhiqiang, Sun Limin. A Large-Scale Cross-Platform Homologous Binary Retrieval Method[J]. Journal of Computer Research and Development, 2018, 55(7): 1498-1507. DOI: 10.7544/issn1000-1239.2018.20180078

A Large-Scale Cross-Platform Homologous Binary Retrieval Method

More Information
  • Published Date: June 30, 2018
  • Due to the extensive code reuse, homologous binaries are widely found in IoT firmwares. Once a vulnerability is found in one firmware, other firmwares sharing the similar piece of codes are at high risk. Thus, homologous binary search is of great significance to IoT firmware security analysis. However, there are still no scalable and efficient homologous binary search methods for IoT firmwares. The time complexity of the traditional method is O(N), so it is not scalable for large-scale IoT firmwares. In this paper, we design, implement, and evaluate a scalable and efficient homologous binary search scheme for IoT firmwares with time complexity O(lgN). The main idea of our methodology is encoding binary file’s readable strings by deep learning network and then generating a local sensitive Hash of the encoding vector for the fast retrieval. We compiled 893 open source components based on 16 different compile-time parameters, resulting in 71 129 pairs of labeled binary files for training and testing the network model. The results show that our method has better ROC characteristics than the traditional method. In addition, the study case shows that our method can complete one homologous binary file retrieval task for 22 594 firmware in less than 1 second.
  • Related Articles

    [1]Zhang Xiaojian, Xu Yaxin, Meng Xiaofeng. Approximate k-Nearest Neighbor Queries of Spatial Data Under Local Differential Privacy[J]. Journal of Computer Research and Development, 2022, 59(7): 1610-1624. DOI: 10.7544/issn1000-1239.20210397
    [2]He Zhouyu, Feng Xupeng, Liu Lijun, Huang Qingsong. Deep Highly Interrelated Hashing for Fast Image Retrieval[J]. Journal of Computer Research and Development, 2020, 57(11): 2375-2388. DOI: 10.7544/issn1000-1239.2020.20190498
    [3]Wu Linyang, Luo Rong, Guo Xueting, Guo Qi. Partitioning Acceleration Between CPU and DRAM: A Case Study on Accelerating Hash Joins in the Big Data Era[J]. Journal of Computer Research and Development, 2018, 55(2): 289-304. DOI: 10.7544/issn1000-1239.2018.20170842
    [4]WuTao, JinJianguo, WeiMingjun. A Hash Function Algorithm Based on Variable Parameter Cascade Chaos[J]. Journal of Computer Research and Development, 2016, 53(3): 674-681. DOI: 10.7544/issn1000-1239.2016.20148155
    [5]Yuan Xinpan, Long Jun, Zhang Zuping, Luo Yueyi, Zhang Hao, and Gui Weihua. Connected Bit Minwise Hashing[J]. Journal of Computer Research and Development, 2013, 50(4): 883-890.
    [6]Qin Chuan, Chang Chin Chen, Guo Cheng. Perceptual Robust Image Hashing Scheme Based on Secret Sharing[J]. Journal of Computer Research and Development, 2012, 49(8): 1690-1698.
    [7]Xu Jian, Zhou Fucai, Yang Muzhou, Li Fuxiang, Zhu Zhiliang. Hierarchical Hash List for Distributed Query Authentication[J]. Journal of Computer Research and Development, 2012, 49(7): 1533-1544.
    [8]Fu Jianqing, Wu Chunming, Wu Jiyi, Ping Lingdi. Reverse Hash Chain Traversal Based on Binary Tree[J]. Journal of Computer Research and Development, 2012, 49(2): 294-303.
    [9]Yin Dan, Gao Hong, and Zou Zhaonian. A Novel Efficient Graph Aggregation Algorithm[J]. Journal of Computer Research and Development, 2011, 48(10): 1831-1841.
    [10]Ding Zhenhua, Li Jintao, Feng Bo. Research on Hash-Based RFID Security Authentication Protocol[J]. Journal of Computer Research and Development, 2009, 46(4): 583-592.
  • Cited by

    Periodical cited type(10)

    1. 孙书魁,范菁,孙中强,曲金帅,代婷婷. 基于深度学习的图像数据增强研究综述. 计算机科学. 2024(01): 150-167 .
    2. 侯森寓,姜高霞,王文剑. 基于相对离群因子的标签噪声过滤方法. 自动化学报. 2024(01): 154-168 .
    3. 刘雅芝,许喆铭,郎丛妍,王涛,李浥东. 基于关系感知和标签消歧的细粒度面部表情识别算法. 电子学报. 2024(10): 3336-3346 .
    4. 曾曦,辛月兰,谢琪琦. 基于性别约束的多分支网络人脸表情识别. 计算机工程与应用. 2023(09): 245-254 .
    5. 王鑫刚,田军委,刘雪松,赵鹏,王守民. 基于改进Yolov5模型的实时人脸检测算法. 激光与红外. 2023(04): 633-640 .
    6. 陈斌,樊飞燕,张睿. 年龄算子深度稀疏融合扩展表情识别. 南京师范大学学报(工程技术版). 2023(03): 43-52 .
    7. 蒋斌,李南星,钟瑞,吴庆岗,常化文. 人脸部分遮挡条件下表情识别研究的新进展. 计算机工程与应用. 2022(12): 12-24 .
    8. 姜高霞,王文剑. 面向回归任务的数值型标签噪声过滤算法. 计算机研究与发展. 2022(08): 1639-1652 . 本站查看
    9. 黄昆,徐洋,张思聪,李克资. 基于深度学习的恶意文档可视化检测. 电子测量技术. 2022(18): 126-133 .
    10. 马志豪,杨娟. 基于局部显著方向纹理模式的表情识别. 电子技术与软件工程. 2021(16): 150-151 .

    Other cited types(9)

Catalog

    Article views (1360) PDF downloads (516) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return