• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Xiaojian, Xu Yaxin, Meng Xiaofeng. Approximate k-Nearest Neighbor Queries of Spatial Data Under Local Differential Privacy[J]. Journal of Computer Research and Development, 2022, 59(7): 1610-1624. DOI: 10.7544/issn1000-1239.20210397
Citation: Zhang Xiaojian, Xu Yaxin, Meng Xiaofeng. Approximate k-Nearest Neighbor Queries of Spatial Data Under Local Differential Privacy[J]. Journal of Computer Research and Development, 2022, 59(7): 1610-1624. DOI: 10.7544/issn1000-1239.20210397

Approximate k-Nearest Neighbor Queries of Spatial Data Under Local Differential Privacy

Funds: This work was supported by the National Natural Science Foundation of China (62072156, 61502146, 91646203, 91746115, 62002098), the Natural Science Foundation of Henan Province (162300410006), the Key Technologies Research and Development Program of Henan Province (202102310563), the Preferential Financing Program for Scientific and Technological Activities of Overseas Students of Henan Province, the Research Program of the Higher Education of Henan Province (19A520012), and the Young Talents Fund of Henan University of Economics and Law.
More Information
  • Published Date: June 30, 2022
  • Aiming at the problem that the existing local encoding mechanisms and perturbation mechanisms cannot preserve the distance between neighbor locations when collecting the spatial data, we propose two efficient algorithms, called PELSH and PULSH, which are based on locality-sensitive hashing(LSH) structure, to respond kNN queries. The two algorithms employ multiple hashing tables with multiple hashing functions to index the locations of all users, on which are relied to answer kNN queries. Based on the hashing tables copied from the collector, each user firstly transforms his/her location into 0/1 string with Hamming embedding algorithm and then uses LSH to compress the Hamming code. Finally, the user locally runs GRR and bit perturbation mechanism on the compressed 0/1 string and reports the perturbed value to the collector. The collector accumulates the reports from all users to reconstruct hashing tables that are traveled to get the approximate kNN queries. Furthermore, in PELSH and PULSH, we use privacy budget partition and user partition strategies to design four local algorithms, called PELSHB, PELSHG, PULSHB, and PULSHG to perturb user data. PELSH and PULSH are compared with existing algorithms in the large-scale real datasets. The experimental results show PELSH and PULSH outperform their competitors, achieve the accurate results of spatial kNN queries.
  • Related Articles

    [1]Zhang Xiaojian, Zhang Leilei, Zhang Zhizheng. Federated Learning Method Under User-Level Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(2): 472-487. DOI: 10.7544/issn1000-1239.202330167
    [2]Hu Yunshu, Zhou Jun, Cao Zhenfu, Dong Xiaolei. Lightweight Multi-User Verifiable Privacy-Preserving Gene Sequence Analysis Scheme[J]. Journal of Computer Research and Development, 2024, 61(10): 2448-2466. DOI: 10.7544/issn1000-1239.202440453
    [3]Zhang Xiaojian, Fu Nan, Meng Xiaofeng. Towards Spatial Range Queries Under Local Differential Privacy[J]. Journal of Computer Research and Development, 2020, 57(4): 847-858. DOI: 10.7544/issn1000-1239.2020.20190360
    [4]Song Lei, Ma Chunguang, Duan Guanghan, Yuan Qi. Privacy-Preserving Logistic Regression on Vertically Partitioned Data[J]. Journal of Computer Research and Development, 2019, 56(10): 2243-2249. DOI: 10.7544/issn1000-1239.2019.20190414
    [5]Zhang Zhichang, Zhang Zhenwen, Zhang Zhiman. User Intent Classification Based on IndRNN-Attention[J]. Journal of Computer Research and Development, 2019, 56(7): 1517-1524. DOI: 10.7544/issn1000-1239.2019.20180648
    [6]Xiong Jinbo, Ma Rong, Niu Ben, Guo Yunchuan, Lin Li. Privacy Protection Incentive Mechanism Based on User-Union Matching in Mobile Crowdsensing[J]. Journal of Computer Research and Development, 2018, 55(7): 1359-1370. DOI: 10.7544/issn1000-1239.2018.20180080
    [7]Zhang Honglei, Shi Yuliang, Zhang Shidong, Zhou Zhongmin, Cui Lizhen. A Privacy Protection Mechanism for Dynamic Data Based on Partition-Confusion[J]. Journal of Computer Research and Development, 2016, 53(11): 2454-2464. DOI: 10.7544/issn1000-1239.2016.20150553
    [8]Li Jiguo, Shi Yuerong, Zhang Yichen. A Privacy Preserving Attribute-Based Encryption Scheme with User Revocation[J]. Journal of Computer Research and Development, 2015, 52(10): 2281-2292. DOI: 10.7544/issn1000-1239.2015.20150580
    [9]Tian Junfeng, Cao Xun. A Cloud User Behavior Authentication Model Based on Multi-Partite Graphs[J]. Journal of Computer Research and Development, 2014, 51(10): 2308-2317. DOI: 10.7544/issn1000-1239.2014.20130619
    [10]Wang Peng, Wang Jingjing, and Yu Nenghai. A Kernel and User-Based Collaborative Filtering Recommendation Algorithm[J]. Journal of Computer Research and Development, 2013, 50(7): 1444-1451.
  • Cited by

    Periodical cited type(2)

    1. 张学旺,雷响. 基于层次化群签名的联盟链身份隐私保护方案. 信息安全研究. 2024(12): 1160-1164 .
    2. 夏莹杰,朱思雨,刘雪娇. 区块链架构下具有条件隐私的车辆编队跨信任域高效群组认证研究. 通信学报. 2023(04): 111-123 .

    Other cited types(6)

Catalog

    Article views (246) PDF downloads (121) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return