• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yang Xiaohui, Wan Rui, Zhang Haibin, Zeng Yifu, Liu Qiao. Semantical Symbol Mapping Embedding Learning Algorithm for Knowledge Graph[J]. Journal of Computer Research and Development, 2018, 55(8): 1773-1784. DOI: 10.7544/issn1000-1239.2018.20180248
Citation: Yang Xiaohui, Wan Rui, Zhang Haibin, Zeng Yifu, Liu Qiao. Semantical Symbol Mapping Embedding Learning Algorithm for Knowledge Graph[J]. Journal of Computer Research and Development, 2018, 55(8): 1773-1784. DOI: 10.7544/issn1000-1239.2018.20180248

Semantical Symbol Mapping Embedding Learning Algorithm for Knowledge Graph

More Information
  • Published Date: July 31, 2018
  • Learning graph embedding is a crucial research issue in the field of statistical relational learning and knowledge graph population, and it is important for the construction and application of knowledge graph in recent years. In this paper, we perform a comparative study of the prevalent knowledge representation based reasoning models, with detailed discussion of the general potential problems contained in their basic assumptions. A semantical symbol sensory projection based neural network model is proposed in order to learn graph embedding, whose basic idea is to utilize the recurrent neural network for encoding the compositional representation of symbol strings (composition of entity-relation) onto their target grounded symbol according to the existing relational data in knowledge. In addition, we introduce the inverse image of the relations into the system to deal with the symmetricasymmetric properties of the relations, which makes the proposed model more adaptable to different types of reasoning tasks on a variety of homogeneous and heterogeneous networks than other solutions. The proposed model is suitable for large scale knowledge graph representation learning. Experimental results on benchmark datasets show that the proposed model achieves state-of-the-art performance on both of the knowledge based completion benchmark tests and the graph based multi-label classification tasks.
  • Cited by

    Periodical cited type(16)

    1. 吴文隆,尹海莲,王宁,徐梦飞,赵鑫喆,殷崭祚,刘元睿,王昊奋,丁岩,李博涵. 大语言模型和知识图谱协同的跨域异质数据查询框架. 计算机研究与发展. 2025(03): 605-619 . 本站查看
    2. 杜雪盈,刘名威,沈立炜,彭鑫. 面向链接预测的知识图谱表示学习方法综述. 软件学报. 2024(01): 87-117 .
    3. 崔员宁,孙泽群,胡伟. 基于规则提示的知识图谱通用推理预训练模型. 计算机研究与发展. 2024(08): 2030-2044 . 本站查看
    4. 李志飞,赵月,张龑. 基于表示学习的知识图谱推理研究综述. 计算机科学. 2023(03): 94-113 .
    5. 赵鹏,孙筱,崔鹏,侯士超,刘大为. 炼油与化工科研知识图谱构建. 中国高新科技. 2023(16): 123-124+127 .
    6. 邱凌,张安思,李少波,张仪宗,沈明明,周鹏. 航空制造知识图谱构建研究综述. 计算机应用研究. 2022(04): 968-977 .
    7. 周贞云,邱均平. 中图分类号的学科应用及其可视化——以我国知识图谱研究为例. 现代情报. 2022(05): 3-12+68 .
    8. 周雪阳,廖诗雨,董泽华,程春雷,叶青. 中成药数据图谱可视化与知识问答平台研究. 软件导刊. 2022(05): 158-162 .
    9. 刘华玲,张国祥,马俊. 图嵌入算法研究进展. 浙江大学学报(理学版). 2022(04): 443-456 .
    10. 周乐,代婷婷,李淳,谢军,楚博策,李峰,张君毅,刘峤. 基于节点-属性二部图的网络表示学习模型. 计算机应用. 2022(08): 2311-2318 .
    11. 杨晓晖,孙莹. 基于知识图谱的社交网络用户行为研究进展. 河北大学学报(自然科学版). 2021(01): 77-86 .
    12. 曾义夫,牟其林,周乐,蓝天,刘峤. 基于图表示学习的会话感知推荐模型. 计算机研究与发展. 2020(03): 590-603 . 本站查看
    13. 魏瑾,李伟华,潘炜. 基于知识图谱的智能决策支持技术及应用研究. 计算机技术与发展. 2020(01): 1-6 .
    14. 孙骁骁. 新形势下图书馆知识服务机制研究. 内蒙古科技与经济. 2019(05): 141-142+144 .
    15. 胡欢,云红艳,贺英,张秀华. 半自动构建扶贫领域知识图谱工具的研究. 计算机与数字工程. 2019(08): 1961-1965+2055 .
    16. 侯梦薇,卫荣,陆亮,兰欣,蔡宏伟. 知识图谱研究综述及其在医疗领域的应用. 计算机研究与发展. 2018(12): 2587-2599 . 本站查看

    Other cited types(16)

Catalog

    Article views (1948) PDF downloads (925) Cited by(32)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return