• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Miao Chunyu, Chen Lina, Wu Jianjun, Zhou Jiaqing, Feng Xuhang. Node Location Verification Framework for WSN[J]. Journal of Computer Research and Development, 2019, 56(6): 1231-1243. DOI: 10.7544/issn1000-1239.2019.20170660
Citation: Miao Chunyu, Chen Lina, Wu Jianjun, Zhou Jiaqing, Feng Xuhang. Node Location Verification Framework for WSN[J]. Journal of Computer Research and Development, 2019, 56(6): 1231-1243. DOI: 10.7544/issn1000-1239.2019.20170660

Node Location Verification Framework for WSN

Funds: This work was supported by the National Natural Science Foundation of China (61502431, 61379023), the Opening Fund of Zhejiang Provincial Top Key Discipline of Computer Science and Technology at Zhejiang Normal University (ZC323014074), and the Zhejiang Provincial Science Technology Department Public Welfare Technology Application Research Project (2015C33060).
More Information
  • Published Date: May 31, 2019
  • Localization is one of the pivot technologies in wireless sensor networks. The traditional node localization schemes consider that the locations of anchors are reliable, which makes these schemes are invalid in some scenarios with unreliable anchors such as drifted anchors, fake anchors and malicious anchors. Aiming at solving this problem mentioned above, a distributed and lightweight node location verification framework (NLVF) is proposed. NLVF offers location verification service as an underlying technic for the traditional localization algorithms, including range-based localization algorithm and the range-free localization algorithm. NLVF can filter out these unreliable anchors by which the application area of traditional localization algorithms is enlarged. UNDA (unreliable node detection algorithm) is the key algorithm of NLVF. It constructs location reputation model based on mutual distance observation between neighbors in WSN. UNDA algorithm improves the localization reliability by filtering out these anchors with inferior location reputations. Extensive experiments are conducted to evaluate the performance of UNDA. Results show that NLVF is adapted to both of range-based and range-free localization schemes. It works better in the presence of three kinds of unreliable anchors. So, it yields general applicability. In addition, UNDA relatively has high accuracy, and the average success rate of detection is more than 95%, so NLVF yields significant practicability.
  • Related Articles

    [1]Sun Chang’ai, Wang Zhen, Pan Lin. Optimized Mutation Testing Techniques for WS-BPEL Programs[J]. Journal of Computer Research and Development, 2019, 56(4): 895-905. DOI: 10.7544/issn1000-1239.2019.20180037
    [2]Guo Xi, Wang Pan. Variable Dependent Relation Analysis in Program State Condition Merging[J]. Journal of Computer Research and Development, 2018, 55(10): 2331-2342. DOI: 10.7544/issn1000-1239.2018.20170545
    [3]Wu Lei, Zhang Wensheng, Wang Jue. Hidden Topic Variable Graphical Model Based on Deep Learning Framework[J]. Journal of Computer Research and Development, 2015, 52(1): 191-199. DOI: 10.7544/issn1000-1239.2015.20131113
    [4]Zhang Zhuhong, Tao Juan. Micro-Immune Optimization Approach Solving Nonlinear Interval Number Programming[J]. Journal of Computer Research and Development, 2014, 51(12): 2633-2643. DOI: 10.7544/issn1000-1239.2014.20131091
    [5]Sun Zhizhuo, Zhang Quanxin, Li Yuanzhang, Tan Yu'an, Liu Jingyu, Ma Zhongmei. Write Optimization for RAID5 in Sequential Data Storage[J]. Journal of Computer Research and Development, 2013, 50(8): 1604-1612.
    [6]Fan Tiehu, Qin Guihe, Zhao Qi. Uniform Design and Reconstructive BLX-α Based Scatter Search for Continuous Optimization Problem[J]. Journal of Computer Research and Development, 2011, 48(6): 1049-1058.
    [7]Ma Hongtu, Hu Shi'an, Su Yanbing, Li Xun, Zhao Rongcai. A Multi-Variable -Function Placement Algorithm Based on Dominator Frontier Inverse[J]. Journal of Computer Research and Development, 2011, 48(2): 346-352.
    [8]Wang Bin. A Discrete Particle Swarm Optimization-based Algorithm for Polygonal Approximation of Digital Curves[J]. Journal of Computer Research and Development, 2010, 47(11): 1886-1892.
    [9]Ye Xiaoping. Model and Algebra of Object-Relation Bitemporal Data Based on Temporal Variables[J]. Journal of Computer Research and Development, 2007, 44(11): 1971-1979.
    [10]Dong Hongbin, Huang Houkuan, He Jun, Hou Wei. An Evolutionary Programming to Solve Constrained Optimization Problems[J]. Journal of Computer Research and Development, 2006, 43(5): 841-850.
  • Cited by

    Periodical cited type(6)

    1. 桂易琪,王鹏程,王威,李鹏海,张乐君. 基于联邦学习与DQN的缓存策略. 扬州大学学报(自然科学版). 2025(02): 45-53 .
    2. 彭牧尧,魏建军,王乾舟,王琨. 基于最大最小蚂蚁系统的容迟网络缓存机制. 无线电通信技术. 2023(06): 1095-1103 .
    3. 刘涛. 基于机会网络节点定位算法的优化设计. 白城师范学院学报. 2021(02): 38-42 .
    4. 刘慧,钱育蓉,张振宇,杨文忠. 机会网络中基于陌生节点的竞争转发策略. 计算机工程与设计. 2021(10): 2710-2717 .
    5. 龙浩,张书奎,张力. 一种车载机会网络文件调度与数据传输算法. 计算机应用与软件. 2020(04): 82-88 .
    6. 葛宇,梁静. 基于相遇概率时效性和重复扩散感知的机会网络消息转发算法. 计算机应用. 2020(05): 1397-1402 .

    Other cited types(3)

Catalog

    Article views (1159) PDF downloads (479) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return