• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Feng, Wang Yasha, Wang Jiangtao, Xiong Haoyi, Zhao Junfeng, Zhang Daqing. Mental Stress Assessment Approach Based on Smartphone Sensing Data[J]. Journal of Computer Research and Development, 2019, 56(3): 611-622. DOI: 10.7544/issn1000-1239.2019.20170809
Citation: Wang Feng, Wang Yasha, Wang Jiangtao, Xiong Haoyi, Zhao Junfeng, Zhang Daqing. Mental Stress Assessment Approach Based on Smartphone Sensing Data[J]. Journal of Computer Research and Development, 2019, 56(3): 611-622. DOI: 10.7544/issn1000-1239.2019.20170809

Mental Stress Assessment Approach Based on Smartphone Sensing Data

More Information
  • Published Date: February 28, 2019
  • Mental stress is harmful on individuals’ physical and mental well-being. It is often easy to be overlooked in the early stage, leading to serious problems. Therefore, it is crucial to detect stress before it evolves into severe problems. Traditional stress detection methods are based on either questionnaires or professional devices, which are time-consuming, costly and intrusive. With the popularity of smartphones with various embedded sensors, which can capture users’ context data contains movement, sound, location and so on, it is an alternative way to access users’ behavior by smartphones, which is less intrusive. This paper proposes an automatic and non-intrusive stress detection approach based on mobile sensing data captured by smartphones. By extracting reasonable features from the perceived data, a more efficient psychological stress assessment method is proposed. First, we generate lots of features represent users’ behavior and explore the correlation between mobile sensing data and stress, then identify discriminative features. Second, we further develop a semi-supervised learning based stress detection model. Specifically, we use techniques such as co-training and random forest to deal with insufficient data. Finally, we evaluate our model based on the StudentLife dataset, and the experimental results verify the advantages of our approach over other baselines.
  • Related Articles

    [1]Yin Yuyu, Wu Guangqiang, Li Youhuizi, Wang Xinyu, Gao Honghao. A Machine Unlearning Method via Feature Constraint and Adaptive Loss Balance[J]. Journal of Computer Research and Development, 2024, 61(10): 2649-2661. DOI: 10.7544/issn1000-1239.202440476
    [2]Fan Ye, Peng Shujuan, Liu Xin, Cui Zhen, Wang Nannan. Cross-Modal Anomaly Detection via Hierarchical Deep Networks and Bi-Quintuple Loss[J]. Journal of Computer Research and Development, 2022, 59(12): 2770-2780. DOI: 10.7544/issn1000-1239.20210729
    [3]Zhang Qiang, Yang Jibin, Zhang Xiongwei, Cao Tieyong, Zheng Changyan. CS-Softmax: A Cosine Similarity-Based Softmax Loss Function[J]. Journal of Computer Research and Development, 2022, 59(4): 936-949. DOI: 10.7544/issn1000-1239.20200879
    [4]He Xianmin, Li Maoxi, He Yanqing. Siamese BERT-Networks Based Classification Mapping of Scientific and Technological Literature[J]. Journal of Computer Research and Development, 2021, 58(8): 1751-1760. DOI: 10.7544/issn1000-1239.2021.20210323
    [5]Wang Jina, Chen Junhua, Gao Jianhua. ECC Multi-Label Code Smell Detection Method Based on Ranking Loss[J]. Journal of Computer Research and Development, 2021, 58(1): 178-188. DOI: 10.7544/issn1000-1239.2021.20190836
    [6]Song Chuanming, He Xing, Min Xin, Wang Xianghai. Index Map Prediction by 2-Neighbor Joint Transition Probability in Palette Coding[J]. Journal of Computer Research and Development, 2018, 55(11): 2557-2568. DOI: 10.7544/issn1000-1239.2018.20170247
    [7]Zhou Yu, He Jianjun, Gu Hong, Zhang Junxing. A Fast Partial Label Learning Algorithm Based on Max-loss Function[J]. Journal of Computer Research and Development, 2016, 53(5): 1053-1062. DOI: 10.7544/issn1000-1239.2016.20150267
    [8]Zhu Yelei, Wang Yujun, Luo Qiang, and Tao Qing. A Soft-Thresholding Coordinate Descent Algorithm for Solving Truncated Hinge Loss[J]. Journal of Computer Research and Development, 2013, 50(11): 2295-2303.
    [9]Kong Kang, Tao Qing, Wang Qunshan, Chu Dejun. A Sub-Gadient Based Solver for L1-Rgularization+Hinge-Loss Problem[J]. Journal of Computer Research and Development, 2012, 49(7): 1494-1499.
    [10]Weng Dawei, Yin Yilong, Yang Gongping, and Qi Xiuyan. Singular Point Extraction from Fingerprint Based on Gaussian-Hermite Moment and Improved Poincare Index[J]. Journal of Computer Research and Development, 2008, 45(11): 1974-1984.
  • Cited by

    Periodical cited type(6)

    1. 唐续豪,刘发贵,王彬,李超,蒋俊,唐泉,陈维明,何凤文. 跨云环境下任务调度综述. 计算机研究与发展. 2023(06): 1262-1275 . 本站查看
    2. 仝青,郭云飞,霍树民,王亚文. 面向主动防御的多样性研究进展. 信息安全学报. 2022(03): 119-133 .
    3. 秦轶翚,马涛. 对等网络环境下多目标任务容错调度方法研究. 计算机仿真. 2021(08): 352-355 .
    4. 刘林东. 一种改进的wRR独立任务调度算法研究. 广东第二师范学院学报. 2020(03): 89-93 .
    5. 郑子秋,张卫东,刘宁,付秋璇,尹健康,贺红梅. 信息安全技术在企业ERP系统中的应用. 科技创新与应用. 2019(18): 174-176 .
    6. 徐俊,项倩红,肖刚. 基于改进混合蛙跳算法的云工作流负载均衡调度优化. 计算机科学. 2019(11): 315-322 .

    Other cited types(9)

Catalog

    Article views (1247) PDF downloads (374) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return