• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tang Yingjie, Wang Fang, Xie Yanwen. An Efficient Failure Reconstruction Based on In-Network Computing for Erasure-Coded Storage Systems[J]. Journal of Computer Research and Development, 2019, 56(4): 767-778. DOI: 10.7544/issn1000-1239.2019.20170834
Citation: Tang Yingjie, Wang Fang, Xie Yanwen. An Efficient Failure Reconstruction Based on In-Network Computing for Erasure-Coded Storage Systems[J]. Journal of Computer Research and Development, 2019, 56(4): 767-778. DOI: 10.7544/issn1000-1239.2019.20170834

An Efficient Failure Reconstruction Based on In-Network Computing for Erasure-Coded Storage Systems

More Information
  • Published Date: March 31, 2019
  • Nowadays, the scale of distributed storage systems is getting increasingly larger. No matter whether the storage devices are disks or solid-state drives, the system is always faced with the risk of data loss. Traditional storage systems maintain three copies of each data block to ensure high reliability. Today, a number of distributed storage systems are increasingly shifting to the use of erasure codes because they can offer higher reliability and lower storage overhead. The erasure codes, however, have an obvious shortcoming in the reconstruction of an unavailable block, because they need to read multiple disks, which results in a large amount of network traffic and disk operations and ultimately high recovery overhead. In this paper, INP (in-network pipeline), an effective failure reconstruction scheme based on in-network computing that utilizes SDN (software defined networking) technology is presented in order to reduce the overhead of recovery without sacrificing any other performance. We use the global topology information for network from SDN controller to establish the tree of reconstruction, and transmit data according to it. The switches do part of the calculation that can reduce the network traffic, therefore to eliminate the bottleneck of the network, and to enhance the recovery performance. We evaluate the recovery efficiency of INP in different network bandwidths. Compared with the common erasure code system, it greatly reduces the network traffic and in a certain bandwidth, the degraded read time is the same as that of normal reading.
  • Related Articles

    [1]Zhang Liping, Liu Lei, Hao Xiaohong, Li Song, Hao Zhongxiao. Voronoi-Based Group Reverse k Nearest Neighbor Query in Obstructed Space[J]. Journal of Computer Research and Development, 2017, 54(4): 861-871. DOI: 10.7544/issn1000-1239.2017.20151111
    [2]Yang Zexue, Hao Zhongxiao. Group Obstacle Nearest Neighbor Query in Spatial Database[J]. Journal of Computer Research and Development, 2013, 50(11): 2455-2462.
    [3]Liu Runtao, Hao Zhongxiao. Fast Algorithm of Nearest Neighbor Query for Line Segments of Spatial Database[J]. Journal of Computer Research and Development, 2011, 48(12): 2379-2384.
    [4]Miao Dongjing, Shi Shengfei, and Li Jianzhong. An Algorithm on Probabilistic Frequent Nearest Neighbor Query over Snapshots of Uncertain Database with Locally Correlation[J]. Journal of Computer Research and Development, 2011, 48(10): 1812-1822.
    [5]Liao Haojun, Han Jizhong, Fang Jinyun. All-Nearest-Neighbor Queries Processing in Spatial Databases[J]. Journal of Computer Research and Development, 2011, 48(1): 86-93.
    [6]Sun Dongpu, Hao Zhongxiao. Group Nearest Neighbor Queries Based on Voronoi Diagrams[J]. Journal of Computer Research and Development, 2010, 47(7): 1244-1251.
    [7]Sun Dongpu, Hao Zhongxiao. Multi-Type Nearest Neighbor Queries with Partial Range Constrained[J]. Journal of Computer Research and Development, 2009, 46(6): 1036-1042.
    [8]Hao Zhongxiao, Wang Yudong, He Yunbin. Line Segment Nearest Neighbor Query of Spatial Database[J]. Journal of Computer Research and Development, 2008, 45(9): 1539-1545.
    [9]Zhang Jing, Lu Hong, and Xue Xiangyang. Efficient Sports Video Retrieval Based on Index Structure[J]. Journal of Computer Research and Development, 2006, 43(11): 1953-1958.
    [10]Dong Daoguo, Liu Zhenzhong, and Xue Xiangyang. VA-Trie: A New and Efficient High Dimensional Index Structure for Approximate k Nearest Neighbor Query[J]. Journal of Computer Research and Development, 2005, 42(12): 2213-2218.
  • Cited by

    Periodical cited type(6)

    1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 .
    2. 徐怡,邱紫恒. 基于遗传算法的划分序乘积空间问题求解层选择. 软件学报. 2024(04): 1945-1963 .
    3. 徐怡,张杰. 基于划分序乘积空间的多尺度决策模型. 智能系统学报. 2024(06): 1528-1538 .
    4. 王宝丽,王涛,廉侃超,韩素青. 粒空间中划分知识的正交补研究. 山东大学学报(理学版). 2022(03): 31-40 .
    5. 陈丽芳,代琪,付其峰. 基于粒计算的ELM加权集成算法研究. 华北理工大学学报(自然科学版). 2020(03): 126-132 .
    6. 应申,王子豪,杜志强,丁火平,李翔翔. 数据粒度均衡的二维矢量瓦片构建方法. 地理信息世界. 2020(04): 66-74 .

    Other cited types(12)

Catalog

    Article views (976) PDF downloads (402) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return