• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Yuxuan, Wei Jianghong, Li Ji, Liu Wenfen, Hu Xuexian. Graph Degree Histogram Publication Method with Node-Differential Privacy[J]. Journal of Computer Research and Development, 2019, 56(3): 508-520. DOI: 10.7544/issn1000-1239.2019.20170886
Citation: Zhang Yuxuan, Wei Jianghong, Li Ji, Liu Wenfen, Hu Xuexian. Graph Degree Histogram Publication Method with Node-Differential Privacy[J]. Journal of Computer Research and Development, 2019, 56(3): 508-520. DOI: 10.7544/issn1000-1239.2019.20170886

Graph Degree Histogram Publication Method with Node-Differential Privacy

More Information
  • Published Date: February 28, 2019
  • The widespread use of various information systems, e.g. social networks, mail systems and recommendation systems, has produced a large amount of graph data. Publishing and sharing these data under the edge or node differential privacy can fully utilize their potential value, meanwhile, the privacy of the involved users can be preserved. Compared with the edge differential privacy, the node differential privacy can effectively prevent users from being re-identified. However, it will lead to a higher sensitivity of the query function at the same time. To conquer this problem, a novel method named sequence edge-removal (SER) is proposed, based on which two graph degree distribution histogram publication mechanisms under node difference privacy are put forward. The experiment results illustrate that the SER method can effectively suppress the sensitivity of the publishing mechanism, and also can retain more edges of the original graph. In addition, it decreases the errors between the published data and the original data. Compared with available works, under the constraint of providing the same level of privacy preservation, the proposed histogram publishing mechanism based on the SER method can describe the degree distribution of the original data more accurately, and thus improves the usability of the published data.
  • Related Articles

    [1]Wang Xiujun, Mo Lei, Zheng Xiao, Wei Linna, Dong Jun, Liu Zhi, Guo Longkun. Sampling Based Fast Publishing Algorithm with Differential Privacy for Data Stream[J]. Journal of Computer Research and Development, 2024, 61(10): 2433-2447. DOI: 10.7544/issn1000-1239.202440481
    [2]Fu Peiwang, Ding Hongfa, Liu Hai, Jiang Heling, Tang Mingli, Yu Yingying. Statistics Collecting Algorithms of Distributed Graph via Local Differential Privacy[J]. Journal of Computer Research and Development, 2024, 61(7): 1643-1669. DOI: 10.7544/issn1000-1239.202330628
    [3]Hong Jinxin, Wu Yingjie, Cai Jianping, Sun Lan. Differentially Private High-Dimensional Binary Data Publication via Attribute Segmentation[J]. Journal of Computer Research and Development, 2022, 59(1): 182-196. DOI: 10.7544/issn1000-1239.20200701
    [4]Zhang Xiaojian, Chen Li, Jin Kaizhong, Meng Xiaofeng. Private High-Dimensional Data Publication with Junction Tree[J]. Journal of Computer Research and Development, 2018, 55(12): 2794-2809. DOI: 10.7544/issn1000-1239.2018.20170756
    [5]Zhu Weijun, You Qingguang, Yang Weidong, Zhou Qinglei. Trajectory Privacy Preserving Based on Statistical Differential Privacy[J]. Journal of Computer Research and Development, 2017, 54(12): 2825-2832. DOI: 10.7544/issn1000-1239.2017.20160647
    [6]Wang Liang, Wang Weiping, Meng Dan. Privacy Preserving Data Publishing via Weighted Bayesian Networks[J]. Journal of Computer Research and Development, 2016, 53(10): 2343-2353. DOI: 10.7544/issn1000-1239.2016.20160465
    [7]Zhang Xiaojian, Shao Chao, Meng Xiaofeng. Accurate Histogram Release under Differential Privacy[J]. Journal of Computer Research and Development, 2016, 53(5): 1106-1117. DOI: 10.7544/issn1000-1239.2016.20150304
    [8]Wu Yingjie, Tang Qingming, Ni Weiwei, Sun Zhihui, Liao Shangbin. A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing[J]. Journal of Computer Research and Development, 2013, 50(3): 578-593.
    [9]Xu Yong, Qin Xiaolin, Yang Yitao, Yang Zhongxue, Huang Can. A QI Weight-Aware Approach to Privacy Preserving Publishing Data Set[J]. Journal of Computer Research and Development, 2012, 49(5): 913-924.
    [10]Chong Zhihong, Ni Weiwei, Liu Tengteng, and Zhang Yong. A Privacy-Preserving Data Publishing Algorithm for Clustering Application[J]. Journal of Computer Research and Development, 2010, 47(12).
  • Cited by

    Periodical cited type(9)

    1. 傅培旺 ,丁红发 ,刘海 ,蒋合领 ,唐明丽 ,于莹莹 . 基于本地差分隐私的分布式图统计采集算法. 计算机研究与发展. 2024(07): 1643-1669 . 本站查看
    2. 李可佳,胡学先,陈越,杨鸿健,徐阳,刘扬. 基于主成分分析和函数机制的差分隐私线性回归算法. 计算机科学. 2023(08): 342-351 .
    3. 孙涛,李晓会,李晗,赵雪. 一种面向图数据的AWG-LDP局部差分隐私保护算法研究. 计算机应用研究. 2023(08): 2467-2472+2500 .
    4. 丁红发,傅培旺,彭长根,龙士工,吴宁博. 混洗差分隐私保护的度分布直方图发布算法. 西安电子科技大学学报. 2023(06): 219-236 .
    5. 李恒春,樊伟麟,孟宁,兰秋军. 符合差分隐私的流数据统计直方图发布. 湘潭大学学报(自然科学版). 2022(02): 72-79 .
    6. 贾俊杰,陈慧,马慧芳,牟玉祥. 差分隐私的查询一致性约束研究. 计算机工程与科学. 2020(01): 71-79 .
    7. 彭长根,赵园园,樊玫玫. 基于最大信息系数的主成分分析差分隐私数据发布算法. 信息网络安全. 2020(02): 37-48 .
    8. 丰霏,陈天翔. “推测信息”的权利属性及其法律规制. 人权研究(辑刊). 2020(01): 195-222+569 .
    9. 林子杰,张宇轩,刘文芬,胡学先. 点差分隐私下基于度序列的图生成模型. 信息工程大学学报. 2020(06): 680-688 .

    Other cited types(14)

Catalog

    Article views (1430) PDF downloads (443) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return