• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tian Naiyu, Ouyang Dantong, Liu Meng, Zhang Liming. A Method of Minimality-Checking of Diagnosis Based on Subset Consistency Detection[J]. Journal of Computer Research and Development, 2019, 56(7): 1396-1407. DOI: 10.7544/issn1000-1239.2019.20180192
Citation: Tian Naiyu, Ouyang Dantong, Liu Meng, Zhang Liming. A Method of Minimality-Checking of Diagnosis Based on Subset Consistency Detection[J]. Journal of Computer Research and Development, 2019, 56(7): 1396-1407. DOI: 10.7544/issn1000-1239.2019.20180192

A Method of Minimality-Checking of Diagnosis Based on Subset Consistency Detection

More Information
  • Published Date: June 30, 2019
  • Model-based diagnosis is an intelligent inference technology in order to overcome the serious defects of the first generation of diagnostic system. With the consistent development of relevant work, it is a significant branch of AI at present. However, most of the researches focus on the process of finding out the diagnosis. The process of detecting the diagnosis ensures the minimality of the final solution. It is also a crucial step in the problem. The traditional process of minimality-checking of diagnosis is to compare the new diagnosis with the ones in the existing diagnosis set, checking whether there is a superset or subset of the new diagnosis. The disadvantage of the traditional process is that as the number of diagnosis increases, the difficulty of detection increases gradually, and the time-consuming increases. To solve the problem, we propose a new method of minimality-checking of diagnosis based on subset consistency detection: subset consistency detection (SCD) method. Avoiding the influence of increasing the diagnosis set size, we determine the minimality of diagnosis through the consistency detection of a few subsets of the diagnosis. Our method can be applied to many efficient diagnostic algorithms such as grouped diagnosis (GD) and abstract circuit diagnosis (ACDIAG), and the efficiency of the algorithms is improved by SCD method.
  • Cited by

    Periodical cited type(8)

    1. 蒋璐宇,欧阳丹彤,董博文,张立明. 针对MUS求解问题的加强剪枝策略. 软件学报. 2024(04): 1964-1979 .
    2. 欧阳丹彤,孙睿,田新亮,高博涵. 基于集合阻塞的不确定系统中传感器选择方法. 吉林大学学报(工学版). 2023(02): 547-554 .
    3. 欧阳丹彤,孙睿,田新亮,张立明,刘萍萍. 基于部分最大可满足性问题的动态系统中最小故障检测隔离集求解方法. 吉林大学学报(工学版). 2023(04): 1163-1173 .
    4. 魏霞,赵相福,黄森. 基于动态极小势参数矩阵求解极小碰集的方法. 计算机集成制造系统. 2023(05): 1657-1667 .
    5. 魏霞,赵相福,黄森. CIMHS:基于优化增量策略求解极小碰集的方法. 电子学报. 2023(05): 1334-1340 .
    6. 孙兆光. 粗糙集在生态水利工程灌区节水节能效果评估中的应用. 能源与环保. 2022(05): 119-124 .
    7. 张丽,王以松,谢仲涛,冯仁艳. 基于MiniSAT的命题极小模型计算方法. 计算机研究与发展. 2021(11): 2515-2523 . 本站查看
    8. 曹朝阳,吴庆涛. 基于自动化控制软件的人工智能交互模型研究. 制造业自动化. 2020(02): 123-127 .

    Other cited types(7)

Catalog

    Article views (938) PDF downloads (296) Cited by(15)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return