• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Niu Panpan, Wang Xiangyang, Yang Siyu, Wen Taotao, Yang Hongying. A Blind Watermark Decoder in Nonsubsampled Shearlet Domain Using Bivariate Weibull Distribution[J]. Journal of Computer Research and Development, 2019, 56(7): 1454-1469. DOI: 10.7544/issn1000-1239.2019.20180278
Citation: Niu Panpan, Wang Xiangyang, Yang Siyu, Wen Taotao, Yang Hongying. A Blind Watermark Decoder in Nonsubsampled Shearlet Domain Using Bivariate Weibull Distribution[J]. Journal of Computer Research and Development, 2019, 56(7): 1454-1469. DOI: 10.7544/issn1000-1239.2019.20180278

A Blind Watermark Decoder in Nonsubsampled Shearlet Domain Using Bivariate Weibull Distribution

More Information
  • Published Date: June 30, 2019
  • Digital image watermarking has become a necessity in many applications such as data authentication, broadcast monitoring on the Internet and ownership identification. There are three indispensable, yet contradictory requirements for a watermarking scheme: perceptual transparency, watermark capacity, and robustness against attacks. Therefore, a watermarking scheme should provide a trade-off among these requirements from the information-theoretic perspective. Improving the ability of imperceptibility, watermark capacity, and robustness at the same time has been a challenge for all image watermarking algorithms. In this paper, we propose a novel digital image watermark decoder in the nonsubsampled Shearlet transform (NSST) domain, wherein a PDF (probability density function) based on the bivariate Weibull distribution is used. In the presented scheme, we construct the nonlinear monotone function based adaptive high-order watermark embedding strength functions by employing the human visual system (HVS) properties, and embed watermark data into the singular values of high entropy NSST coefficients blocks. At the watermark receiver, the singular values of high entropy NSST coefficients blocks are firstly modeled by employing the bivariate Weibull distribution according to their inter-scale dependencies, then the statistical model parameters of bivariate Weibull distribution are estimated effectively, and finally a blind watermark extraction approach is developed using the maximum likelihood method based on the bivariate Weibull distribution. The experimental results show that the proposed blind watermark decoder is superior to other decoders in terms of imperceptibility and robustness.
  • Cited by

    Periodical cited type(8)

    1. 孙培育,史悦. 基于离散傅里叶变换的数字图像空间域水印方法. 微型电脑应用. 2023(03): 132-134 .
    2. 毛建芳. 基于非下采样Shearlet变换耦合能量关联度的医学图像融合算法. 计算机测量与控制. 2023(09): 228-234 .
    3. 陆盈,邱建林. 基于非下采样Shearlet变换耦合相对亮度测度的可见光与红外图像融合算法. 光学技术. 2022(02): 244-249 .
    4. 徐沛,沙长涛. 改进压缩感知的舰船数字图像水印算法. 舰船科学技术. 2022(19): 166-169 .
    5. 陈杰,张学东. 基于DCT变换的食品图像多重水印嵌入算法设计. 食品工业. 2021(06): 238-242 .
    6. 郑庆翔. 基于小波变换的数字多媒体视频水印盲检测方法. 保山学院学报. 2021(05): 84-89 .
    7. 杨建翠,马庆功. 基于非下采样Shearlet变换耦合导向法则的多聚焦图像融合算法. 电子测量与仪器学报. 2020(03): 36-42 .
    8. 杨竹青,谢宏. 基于非下采样Shearlet变换与剥离策略的可见光与红外图像融合算法. 光学技术. 2020(06): 728-733 .

    Other cited types(6)

Catalog

    Article views (949) PDF downloads (336) Cited by(14)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return