• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Yuming, Li Wei. Granular Vectors and K Nearest Neighbor Granular Classifiers[J]. Journal of Computer Research and Development, 2019, 56(12): 2600-2611. DOI: 10.7544/issn1000-1239.2019.20180572
Citation: Chen Yuming, Li Wei. Granular Vectors and K Nearest Neighbor Granular Classifiers[J]. Journal of Computer Research and Development, 2019, 56(12): 2600-2611. DOI: 10.7544/issn1000-1239.2019.20180572

Granular Vectors and K Nearest Neighbor Granular Classifiers

More Information
  • Published Date: November 30, 2019
  • K nearest neighbor (KNN) classifier is a classical, simple and effective classifier. It has been widely employed in the fields of artificial intelligence and machine learning. Aiming at the problem that traditional classifiers are difficult to deal with uncertain data, we study a technique of neighborhood granulation of samples on each atom feature, construct some granular vectors, and propose a K nearest neighbor classification method based on these granular vectors in this paper. The method introduces a neighborhood rough set model to granulate samples in a classification system, and the raw data can be converted into some feature neighborhood granules. Then, a granular vector is induced by a set of neighborhood granules, and several operators of granular vectors are defined. We present two metrics of granular vectors which are relative granular distance and absolute granular distance, respectively. The monotonicity of distance of granular vectors is proved. Furthermore, the concept of K nearest neighbor granular vector is defined based on the distance of granular vectors, and K nearest neighbor granular classifier is designed. Finally, the K nearest neighbor granular classifier is compared with the classical K nearest neighbor classifier using several UCI datasets. Theoretical analysis and experimental results show that the K nearest neighbor granular classifier has better classification performance under suitable granulation parameters and k values.
  • Related Articles

    [1]Ma Zhaojia, Shao En, Di Zhanyuan, Ma Lixian. Porting and Parallel Optimization of Common Operators Based on Heterogeneous Programming Models[J]. Journal of Computer Research and Development, 2025, 62(4): 1017-1032. DOI: 10.7544/issn1000-1239.202330869
    [2]Cai Di, Hong Xuehai, Xiao Junmin, Tan Guangming. Parallel Optimization for Large-Scale Ocean Data Assimilation[J]. Journal of Computer Research and Development, 2023, 60(5): 1177-1190. DOI: 10.7544/issn1000-1239.202111185
    [3]Yang Meifang, Che Yonggang, Gao Xiang. Heterogeneous Parallel Optimization of an Engine Combustion Simulation Application with the OpenMP 4.0 Standard[J]. Journal of Computer Research and Development, 2018, 55(2): 400-408. DOI: 10.7544/issn1000-1239.2018.20160872
    [4]Liu Song, Wu Weiguo, Zhao Bo, Jiang Qing. Loop Tiling for Optimization of Locality and Parallelism[J]. Journal of Computer Research and Development, 2015, 52(5): 1160-1176. DOI: 10.7544/issn1000-1239.2015.20131387
    [5]Zhang Zhiyuan, Zhou Yufeng, Liu Li, Yang Guangwen. Performance Characterization and Efficient Parallelization of MASNUM Wave Model[J]. Journal of Computer Research and Development, 2015, 52(4): 851-860. DOI: 10.7544/issn1000-1239.2015.20131415
    [6]Wang Yongxian, Zhang Lilun, Che Yonggang, Xu Chuanfu, Liu Wei, Cheng Xinghua. Heterogeneous Computing and Optimization on Tianhe-2,Supercomputer System for High-Order Accurate CFD Applications[J]. Journal of Computer Research and Development, 2015, 52(4): 833-842. DOI: 10.7544/issn1000-1239.2015.20131922
    [7]Zhao Ze, Liu Qiang, Li Dong, and Cui Li. EasiTest: A Multi-Radio Testbed for Heterogeneous Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2012, 49(3): 506-517.
    [8]Wen Shuguang, Xie Gaogang. libpcap-MT: A General Purpose Packet Capture Library with Multi-Thread[J]. Journal of Computer Research and Development, 2011, 48(5): 756-764.
    [9]Gao Xiang, Zhang Longbing, Hu Weiwu. A CapacityShared Heterogeneous CMP Cache[J]. Journal of Computer Research and Development, 2008, 45(5): 877-885.
    [10]Sun Xiaojuan, Sun Ninghui, Chen Mingyu. Optimization of B-NIDS for Multicore[J]. Journal of Computer Research and Development, 2007, 44(10): 1733-1740.
  • Cited by

    Periodical cited type(10)

    1. 郜晨,何升,杭骁骞. 基于申威NMII的锁死故障监测与诊断. 计算机应用研究. 2024(04): 1015-1021 .
    2. 范国炜,吴涛,刘壮. 基于新一代神威天气和气候预测系统并行优化. 计算机仿真. 2023(12): 353-358 .
    3. 陈淑平,何王全,李祎,漆锋滨. InfiniBand中面向有限多播表条目数的多播路由算法. 计算机研究与发展. 2022(04): 864-881 . 本站查看
    4. 聂婕,左子杰,黄磊,王志刚,孙正雅,仲国强,王鑫,王玉成,刘安安,张弘,董军宇,魏志强. 面向海洋的多模态智能计算:挑战、进展和展望. 中国图象图形学报. 2022(09): 2589-2610 .
    5. 张绍晴,林璘,刘才力,杨光,王兆瑛,费云龙,任倩倩,苑诗敏,倪欣宁,王一帆,刘银杏,杨浩宇,任国志,荀皓,宋睿哲,蔡金卓,杨帆,刘博文,郭锦,陈玥,卢绿,李江玉,江应境,王雪,王凯迪,王振明,于洋洋,赵浩然,王静菊,马有为,任斯敏,雍建林. 地球系统数值模拟历史回顾及未来发展之机遇与挑战. 中国海洋大学学报(自然科学版). 2022(11): 1-12 .
    6. 陈淑平,李祎,何王全,漆锋滨. 胖树拓扑中高效实用的定制多播路由算法. 计算机研究与发展. 2022(12): 2689-2707 . 本站查看
    7. 朱雨,庞建民,徐金龙,陶小涵,王军. 面向SW26010处理器的三维Stencil自适应分块参数算法. 计算机科学. 2021(06): 10-18 .
    8. 范培勤,过武宏,韩梅,唐帅,张驰. 水声环境特征参数并行预报方法研究. 计算机工程与科学. 2021(11): 1920-1925 .
    9. 庄园,郭强,张洁,曾云辉. 大规模申威众核环境下二维数据计算的可扩展方法. 计算机科学. 2020(08): 87-92 .
    10. 姜尚志,唐生林,高希然,花嵘,陈莉,刘颖. “神威·太湖之光”上Tend_lin应用的并行优化研究. 计算机工程与科学. 2020(10): 1842-1851 .

    Other cited types(7)

Catalog

    Article views (925) PDF downloads (360) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return