• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Yuming, Li Wei. Granular Vectors and K Nearest Neighbor Granular Classifiers[J]. Journal of Computer Research and Development, 2019, 56(12): 2600-2611. DOI: 10.7544/issn1000-1239.2019.20180572
Citation: Chen Yuming, Li Wei. Granular Vectors and K Nearest Neighbor Granular Classifiers[J]. Journal of Computer Research and Development, 2019, 56(12): 2600-2611. DOI: 10.7544/issn1000-1239.2019.20180572

Granular Vectors and K Nearest Neighbor Granular Classifiers

More Information
  • Published Date: November 30, 2019
  • K nearest neighbor (KNN) classifier is a classical, simple and effective classifier. It has been widely employed in the fields of artificial intelligence and machine learning. Aiming at the problem that traditional classifiers are difficult to deal with uncertain data, we study a technique of neighborhood granulation of samples on each atom feature, construct some granular vectors, and propose a K nearest neighbor classification method based on these granular vectors in this paper. The method introduces a neighborhood rough set model to granulate samples in a classification system, and the raw data can be converted into some feature neighborhood granules. Then, a granular vector is induced by a set of neighborhood granules, and several operators of granular vectors are defined. We present two metrics of granular vectors which are relative granular distance and absolute granular distance, respectively. The monotonicity of distance of granular vectors is proved. Furthermore, the concept of K nearest neighbor granular vector is defined based on the distance of granular vectors, and K nearest neighbor granular classifier is designed. Finally, the K nearest neighbor granular classifier is compared with the classical K nearest neighbor classifier using several UCI datasets. Theoretical analysis and experimental results show that the K nearest neighbor granular classifier has better classification performance under suitable granulation parameters and k values.
  • Related Articles

    [1]Lin Fu, Li Mingkang, Luo Xuexiong, Zhang Shuhao, Zhang Yue, Wang Zitong. Anomaly-Aware Variational Graph Autoencoder Based Graph-Level Anomaly Detection Algorithm[J]. Journal of Computer Research and Development, 2024, 61(8): 1968-1981. DOI: 10.7544/issn1000-1239.202440177
    [2]Zhao Lei, Ji Boyan, Xing Wei, Lin Huaizhong, Lin Zhijie. Ancient Painting Inpainting Algorithm Based on Multi-Channel Encoder and Dual Attention[J]. Journal of Computer Research and Development, 2023, 60(12): 2814-2831. DOI: 10.7544/issn1000-1239.202220648
    [3]Chen Kejia, Lu Hao, Zhang Jiajun. Conditional Variational Time-Series Graph Auto-Encoder[J]. Journal of Computer Research and Development, 2020, 57(8): 1663-1673. DOI: 10.7544/issn1000-1239.2020.20200202
    [4]Lan Tian, Peng Chuan, Li Sen, Ye Wenzheng, Li Meng, Hui Guoqiang, Lü Yilan, Qian Yuxin, Liu Qiao. An Overview of Monaural Speech Denoising and Dereverberation Research[J]. Journal of Computer Research and Development, 2020, 57(5): 928-953. DOI: 10.7544/issn1000-1239.2020.20190306
    [5]Chen Yarui, Jiang Shuoran, Yang Jucheng, Zhao Tingting, Zhang Chuanlei. Mixture of Variational Autoencoder[J]. Journal of Computer Research and Development, 2020, 57(1): 136-144. DOI: 10.7544/issn1000-1239.2020.20190204
    [6]Xu Shaoping, Liu Tingyun, Luo Jie, Zhang Guizhen, Tang Yiling. An Image Quality-Aware Fast Blind Denoising Algorithm for Mixed Noise[J]. Journal of Computer Research and Development, 2019, 56(11): 2458-2468. DOI: 10.7544/issn1000-1239.2019.20180617
    [7]Mao Cunli, Yu Zhengtao, Shen Tao, Gao Shengxiang, Guo Jianyi, Xian Yantuan. A Kind of Nonferrous Metal Industry Entity Recognition Model Based on Deep Neural Network Architecture[J]. Journal of Computer Research and Development, 2015, 52(11): 2451-2459. DOI: 10.7544/issn1000-1239.2015.20140808
    [8]Chen Qiang, Zheng Yuhui, Sun Quansen, Xia Deshen. Patch Similarity Based Anisotropic Diffusion for Image Denoising[J]. Journal of Computer Research and Development, 2010, 47(1): 33-42.
    [9]Xu Long, Deng Lei, Peng Xiaoming, Ji Xiangyang, Gao Wen. The VLSI Design of AVS Entropy Coder[J]. Journal of Computer Research and Development, 2009, 46(5): 881-888.
    [10]Li Yingxin and Ruan Xiaogang. Feature Selection for Cancer Classification Based on Support Vector Machine[J]. Journal of Computer Research and Development, 2005, 42(10): 1796-1801.
  • Cited by

    Periodical cited type(3)

    1. 王瑶,龙华,邵玉斌,杜庆治. 可变时长的短时广播语音多语种识别. 云南大学学报(自然科学版). 2022(03): 490-496 .
    2. 龙华,黄张衡,邵玉斌,杜庆治,苏树盟. 基于改进CFCC特征提取的语种识别算法研究. 通信学报. 2022(12): 211-221 .
    3. 邵玉斌,刘晶,龙华,杜庆治,李一民. 基于声道频谱参数的语种识别. 北京邮电大学学报. 2021(03): 112-119 .

    Other cited types(1)

Catalog

    Article views (926) PDF downloads (360) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return