• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Qi, Ni Yufang, Huang Xiaomeng. Regional Ocean Model Parallel Optimization in “Sunway TaihuLight”[J]. Journal of Computer Research and Development, 2019, 56(7): 1556-1566. DOI: 10.7544/issn1000-1239.2019.20180791
Citation: Wu Qi, Ni Yufang, Huang Xiaomeng. Regional Ocean Model Parallel Optimization in “Sunway TaihuLight”[J]. Journal of Computer Research and Development, 2019, 56(7): 1556-1566. DOI: 10.7544/issn1000-1239.2019.20180791

Regional Ocean Model Parallel Optimization in “Sunway TaihuLight”

More Information
  • Published Date: June 30, 2019
  • As an important component of earth system modeling, the ocean model plays a vital role in many fields. It is not only an indispensable scientific research method for studying oceans, estuaries and coasts, but also the forecasting system based on the ocean model can predict typhoons and tsunami in real time. In order to simulate more fine-grained oceanic changes, the ocean model is moving toward higher resolution and more physical parameterization schemes, and general computers are no longer able to meet their needs. As heat dissipation and power consumption become the major bottlenecks of general-purpose processors, multi-core, many cores, and the resulting heterogeneous platform has become the main trend of next generation of supercomputers, which provides a solid foundation for developing high-resolution ocean models. Based on the domestic supercomputer “Sunway TaihuLight”, this paper takes the advantages of its heterogeneous many-core architecture to transplant and optimize the regional ocean model: Princeton ocean model (POM), and fully utilizes the characteristics and advantages of the domestic heterogeneous many-core platform. By using master-slave core collaboration, the high-resolution ocean model swPOM increases the performance efficiency by about 13 times compared with the pure master core and about 2.8 times compared with the general Intel platform, and can scale up to 250 000 cores to provide sufficient support for real-time forecasting system.
  • Related Articles

    [1]Chen Haipeng, Shen Xuanjing, Long Jianwu. Threshold Optimization Framework of Global Thresholding Algorithms Using Gaussian Fitting[J]. Journal of Computer Research and Development, 2016, 53(4): 892-903. DOI: 10.7544/issn1000-1239.2016.20140508
    [2]Zhu Yelei, Wang Yujun, Luo Qiang, and Tao Qing. A Soft-Thresholding Coordinate Descent Algorithm for Solving Truncated Hinge Loss[J]. Journal of Computer Research and Development, 2013, 50(11): 2295-2303.
    [3]Qian Manli, Li Yonghui, Huang Yi, Zhou Yiqing, Shi Jinglin, Yang Xuezhi. An Adaptive Soft Frequency Reuse Scheme for LTE Systems[J]. Journal of Computer Research and Development, 2013, 50(5): 912-920.
    [4]Long Jianwu, Shen Xuanjing, and Chen Haipeng. Interactive Document Images Thresholding Segmentation Algorithm Based on Image Regions[J]. Journal of Computer Research and Development, 2012, 49(7): 1420-1431.
    [5]Lei Shaohua, Han Yinhe, and Li Xiaowei. Soft Error Rate Analysis for Combinational Logic Using Frequency Method[J]. Journal of Computer Research and Development, 2011, 48(3): 535-544.
    [6]Sun Yan, Zhang Minxuan, Li Shaoqing, and Gao Changlei. Optimizing Soft Error Rate and Overhead of Circuits Based on Sensitive Registers Replacement[J]. Journal of Computer Research and Development, 2011, 48(1): 28-35.
    [7]Qiao Lishan, Chen Songcan, Wang Min. Image Thresholding Based on Relevance Vector Machine[J]. Journal of Computer Research and Development, 2010, 47(8): 1329-1337.
    [8]Zou Yan, Lu Peizhong, and Zhu Xueling. A Novel Algorithm of Soft Fast Correlation Attack and Applications[J]. Journal of Computer Research and Development, 2007, 44(4): 581-588.
    [9]Huang Hailin, Tang Zhimin, Xu Tong. Fault Injection and Soft Error Sensitivity Characterization for Fault-Tolerant Godson-1 Processor[J]. Journal of Computer Research and Development, 2006, 43(10): 1820-1827.
    [10]Wang Fangshi, Xu De, and Wu Weixin. A Cluster Algorithm of Automatic Key Frame Extraction Based on Adaptive Threshold[J]. Journal of Computer Research and Development, 2005, 42(10): 1752-1757.
  • Cited by

    Periodical cited type(3)

    1. 甘臣权,付祥,冯庆东,祝清意. 基于公共情感特征压缩与融合的轻量级图文情感分析模型. 计算机研究与发展. 2023(05): 1099-1110 . 本站查看
    2. 朱明航,柳欣,于镇宁,徐行,郑书凯. 基于双向伪标签自监督学习的跨人脸-语音匹配方法. 计算机研究与发展. 2023(11): 2638-2649 . 本站查看
    3. 柳欣,王锐,钟必能,王楠楠. 结合双流网络和双向五元组损失的跨人脸-语音匹配. 计算机研究与发展. 2022(03): 694-705 . 本站查看

    Other cited types(6)

Catalog

    Article views (1468) PDF downloads (692) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return