• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Qi, Ni Yufang, Huang Xiaomeng. Regional Ocean Model Parallel Optimization in “Sunway TaihuLight”[J]. Journal of Computer Research and Development, 2019, 56(7): 1556-1566. DOI: 10.7544/issn1000-1239.2019.20180791
Citation: Wu Qi, Ni Yufang, Huang Xiaomeng. Regional Ocean Model Parallel Optimization in “Sunway TaihuLight”[J]. Journal of Computer Research and Development, 2019, 56(7): 1556-1566. DOI: 10.7544/issn1000-1239.2019.20180791

Regional Ocean Model Parallel Optimization in “Sunway TaihuLight”

More Information
  • Published Date: June 30, 2019
  • As an important component of earth system modeling, the ocean model plays a vital role in many fields. It is not only an indispensable scientific research method for studying oceans, estuaries and coasts, but also the forecasting system based on the ocean model can predict typhoons and tsunami in real time. In order to simulate more fine-grained oceanic changes, the ocean model is moving toward higher resolution and more physical parameterization schemes, and general computers are no longer able to meet their needs. As heat dissipation and power consumption become the major bottlenecks of general-purpose processors, multi-core, many cores, and the resulting heterogeneous platform has become the main trend of next generation of supercomputers, which provides a solid foundation for developing high-resolution ocean models. Based on the domestic supercomputer “Sunway TaihuLight”, this paper takes the advantages of its heterogeneous many-core architecture to transplant and optimize the regional ocean model: Princeton ocean model (POM), and fully utilizes the characteristics and advantages of the domestic heterogeneous many-core platform. By using master-slave core collaboration, the high-resolution ocean model swPOM increases the performance efficiency by about 13 times compared with the pure master core and about 2.8 times compared with the general Intel platform, and can scale up to 250 000 cores to provide sufficient support for real-time forecasting system.
  • Related Articles

    [1]Ma Zhaojia, Shao En, Di Zhanyuan, Ma Lixian. Porting and Parallel Optimization of Common Operators Based on Heterogeneous Programming Models[J]. Journal of Computer Research and Development, 2025, 62(4): 1017-1032. DOI: 10.7544/issn1000-1239.202330869
    [2]Cai Di, Hong Xuehai, Xiao Junmin, Tan Guangming. Parallel Optimization for Large-Scale Ocean Data Assimilation[J]. Journal of Computer Research and Development, 2023, 60(5): 1177-1190. DOI: 10.7544/issn1000-1239.202111185
    [3]Yang Meifang, Che Yonggang, Gao Xiang. Heterogeneous Parallel Optimization of an Engine Combustion Simulation Application with the OpenMP 4.0 Standard[J]. Journal of Computer Research and Development, 2018, 55(2): 400-408. DOI: 10.7544/issn1000-1239.2018.20160872
    [4]Liu Song, Wu Weiguo, Zhao Bo, Jiang Qing. Loop Tiling for Optimization of Locality and Parallelism[J]. Journal of Computer Research and Development, 2015, 52(5): 1160-1176. DOI: 10.7544/issn1000-1239.2015.20131387
    [5]Zhang Zhiyuan, Zhou Yufeng, Liu Li, Yang Guangwen. Performance Characterization and Efficient Parallelization of MASNUM Wave Model[J]. Journal of Computer Research and Development, 2015, 52(4): 851-860. DOI: 10.7544/issn1000-1239.2015.20131415
    [6]Wang Yongxian, Zhang Lilun, Che Yonggang, Xu Chuanfu, Liu Wei, Cheng Xinghua. Heterogeneous Computing and Optimization on Tianhe-2,Supercomputer System for High-Order Accurate CFD Applications[J]. Journal of Computer Research and Development, 2015, 52(4): 833-842. DOI: 10.7544/issn1000-1239.2015.20131922
    [7]Zhao Ze, Liu Qiang, Li Dong, and Cui Li. EasiTest: A Multi-Radio Testbed for Heterogeneous Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2012, 49(3): 506-517.
    [8]Wen Shuguang, Xie Gaogang. libpcap-MT: A General Purpose Packet Capture Library with Multi-Thread[J]. Journal of Computer Research and Development, 2011, 48(5): 756-764.
    [9]Gao Xiang, Zhang Longbing, Hu Weiwu. A CapacityShared Heterogeneous CMP Cache[J]. Journal of Computer Research and Development, 2008, 45(5): 877-885.
    [10]Sun Xiaojuan, Sun Ninghui, Chen Mingyu. Optimization of B-NIDS for Multicore[J]. Journal of Computer Research and Development, 2007, 44(10): 1733-1740.
  • Cited by

    Periodical cited type(10)

    1. 郜晨,何升,杭骁骞. 基于申威NMII的锁死故障监测与诊断. 计算机应用研究. 2024(04): 1015-1021 .
    2. 范国炜,吴涛,刘壮. 基于新一代神威天气和气候预测系统并行优化. 计算机仿真. 2023(12): 353-358 .
    3. 陈淑平,何王全,李祎,漆锋滨. InfiniBand中面向有限多播表条目数的多播路由算法. 计算机研究与发展. 2022(04): 864-881 . 本站查看
    4. 聂婕,左子杰,黄磊,王志刚,孙正雅,仲国强,王鑫,王玉成,刘安安,张弘,董军宇,魏志强. 面向海洋的多模态智能计算:挑战、进展和展望. 中国图象图形学报. 2022(09): 2589-2610 .
    5. 张绍晴,林璘,刘才力,杨光,王兆瑛,费云龙,任倩倩,苑诗敏,倪欣宁,王一帆,刘银杏,杨浩宇,任国志,荀皓,宋睿哲,蔡金卓,杨帆,刘博文,郭锦,陈玥,卢绿,李江玉,江应境,王雪,王凯迪,王振明,于洋洋,赵浩然,王静菊,马有为,任斯敏,雍建林. 地球系统数值模拟历史回顾及未来发展之机遇与挑战. 中国海洋大学学报(自然科学版). 2022(11): 1-12 .
    6. 陈淑平,李祎,何王全,漆锋滨. 胖树拓扑中高效实用的定制多播路由算法. 计算机研究与发展. 2022(12): 2689-2707 . 本站查看
    7. 朱雨,庞建民,徐金龙,陶小涵,王军. 面向SW26010处理器的三维Stencil自适应分块参数算法. 计算机科学. 2021(06): 10-18 .
    8. 范培勤,过武宏,韩梅,唐帅,张驰. 水声环境特征参数并行预报方法研究. 计算机工程与科学. 2021(11): 1920-1925 .
    9. 庄园,郭强,张洁,曾云辉. 大规模申威众核环境下二维数据计算的可扩展方法. 计算机科学. 2020(08): 87-92 .
    10. 姜尚志,唐生林,高希然,花嵘,陈莉,刘颖. “神威·太湖之光”上Tend_lin应用的并行优化研究. 计算机工程与科学. 2020(10): 1842-1851 .

    Other cited types(7)

Catalog

    Article views (1471) PDF downloads (692) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return