• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Xingshu, Chen Jiaxin, Jin Xin, Ge Long. Process Abnormal Detection Based on System Call Vector Space in Cloud Computing Environments[J]. Journal of Computer Research and Development, 2019, 56(12): 2684-2693. DOI: 10.7544/issn1000-1239.2019.20180843
Citation: Chen Xingshu, Chen Jiaxin, Jin Xin, Ge Long. Process Abnormal Detection Based on System Call Vector Space in Cloud Computing Environments[J]. Journal of Computer Research and Development, 2019, 56(12): 2684-2693. DOI: 10.7544/issn1000-1239.2019.20180843

Process Abnormal Detection Based on System Call Vector Space in Cloud Computing Environments

More Information
  • Published Date: November 30, 2019
  • The intrusion detection scheme based on system call in the traditional host domain often monitors the running behavior of a single privileged process. It is difficult to effectively detect the abnormal process behavior of the virtual machine using the host intrusion detection scheme because of more security risks in the cloud computing environment. To break this limitation, a virtual machine process behavior detection model based on system call vector space is proposed. The model collects system call data of different operating system without using agent in the virtual machine. The TF-IDF (term frequency-inverse document frequency) algorithm idea is introduced to weight the process system call data to distinguish different running services in the virtual machine and identify abnormal process behavior. Furthermore, in order to optimize the efficiency of the detection algorithm, a storage strategy combining compressed sparse row (CSR) matrix and K-dimension tree is designed. Eventually a prototype system called VMPBD (virtual machine process behavior detecting) has been implemented on the platform of KVM (kernel-based virtual machine). The functions and performance of VMPBD is tested on Linux and Windows virtual machines. The results show that VMPBD can effectively detect the abnormal behavior of the virtual machine processes, and the detection false alarm rate and system performance overhead are within the acceptable range.
  • Related Articles

    [1]Bai Tian, Xiao Mingyu. Computational Complexity of Feedback Set and Subset Feedback Set Problems: A Survey[J]. Journal of Computer Research and Development, 2025, 62(1): 104-118. DOI: 10.7544/issn1000-1239.202330693
    [2]Zhang Tianming, Zhao Jie, Jin Lu, Chen Lu, Cao Bin, Fan Jing. Vertex Betweenness Centrality Computation Method over Temporal Graphs[J]. Journal of Computer Research and Development, 2023, 60(10): 2383-2393. DOI: 10.7544/issn1000-1239.202220650
    [3]Zhu Xia, Luo Junzhou, Song Aibo, and Dong Fang. A Multi-Dimensional Indexing for Complex Query in Cloud Computing[J]. Journal of Computer Research and Development, 2013, 50(8): 1592-1603.
    [4]Wang Zhuxiao, Hu Hong, Chen Limin, Shi Zhongzhi. Parallel Computation Techniques for Dynamic Description Logics Reasoning[J]. Journal of Computer Research and Development, 2011, 48(12): 2317-2325.
    [5]Zhang Yu, Liu Ping, Liu Yanbing, Tan Jianlong, Guo Li. Algorithmic Complexity Attacks Against WuManber[J]. Journal of Computer Research and Development, 2011, 48(8): 1381-1389.
    [6]Lu Jiyuan, Zhang Peizhao, Duan Xiaohua, Chao Hongyang. An Optimized Motion Estimation Algorithm Based on Macroblock Priorities[J]. Journal of Computer Research and Development, 2011, 48(3): 494-500.
    [7]Lin Xin, Li Shanping, Yang Zhaohui, Xu Jian. A Reasoning-Oriented Context Replacement Algorithm in Pervasive Computing[J]. Journal of Computer Research and Development, 2009, 46(4): 549-557.
    [8]Huang Han, Hao Zhifeng, Qin Yong. Time Complexity of Evolutionary Programming[J]. Journal of Computer Research and Development, 2008, 45(11): 1850-1857.
    [9]Tian Mei, Luo Siwei, Huang Yaping, and Zhao Jiali. Extracting Bottom-Up Attention Information Based on Local Complexity and Early Visual Features[J]. Journal of Computer Research and Development, 2008, 45(10): 1739-1746.
    [10]Pan Rui, Zhu Daming, and Ma Shaohan. Research on Computational Complexity and Approximation Algorithm for General Facility Location Problem[J]. Journal of Computer Research and Development, 2007, 44(5): 790-797.

Catalog

    Article views (979) PDF downloads (481) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return