• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Bai Tian, Xiao Mingyu. Computational Complexity of Feedback Set and Subset Feedback Set Problems: A Survey[J]. Journal of Computer Research and Development, 2025, 62(1): 104-118. DOI: 10.7544/issn1000-1239.202330693
Citation: Bai Tian, Xiao Mingyu. Computational Complexity of Feedback Set and Subset Feedback Set Problems: A Survey[J]. Journal of Computer Research and Development, 2025, 62(1): 104-118. DOI: 10.7544/issn1000-1239.202330693

Computational Complexity of Feedback Set and Subset Feedback Set Problems: A Survey

Funds: This work was supported by the National Natural Science Foundation of China (62372095, 61972070).
More Information
  • Author Bio:

    Bai Tian: born in 1993. PhD. Student member of CCF. His main research interests include graph algorithms and computational complexity

    Xiao Mingyu: born in 1979. PhD, professor. Distinguished member of CCF. His main research interests include graph theory and graph algorithms, exact and parameterized algorithms, combinatorial optimization, and mechanism design and algorithmic game theory

  • Received Date: August 22, 2023
  • Revised Date: January 21, 2024
  • Available Online: October 17, 2024
  • The feedback set problem is one of the most widely and deeply studied NP-complete graph problems in the field of computer science, with important applications in concurrent computing, large-scale integrated circuits, coding design, software verification, and social network analysis. The subset feedback set problem is a nature generalization of the feedback set problem, and has much universal and practical. In recent several years, the classification of the computational complexity for these two problems has drawn certain interests, and many breakthroughs have been made in the area of algorithms. In this paper, the survey on these problems mainly contains two parts. The first part introduces different versions of the feedback set and subset feedback set problems. The essential relations among these versions and their computational complexity in general graphs are also discussed in this part. The second part introduces the computational complexity of the feedback set and subset feedback set problems in some important and classical graph subclasses, including degree bounded graphs, planar graphs, tournaments, intersection graphs, forbidden graphs, and bipartite graphs. Finally, by analyzing and summarizing the existing research, the major research trends on the feedback set and subset feedback set problems are outlined.

  • [1]
    王建新,江国红,李文军,等. 反馈集问题的研究进展[J]. 计算机科学,2011,38(1):40−47 doi: 10.3969/j.issn.1002-137X.2011.01.008

    Wang Jianxin, Jiang Guohong, Ling Wenjun, et al. Algorithms for feedback set problems: A survey[J]. Computer Science, 2011, 38(1): 40−47 (in Chinese) doi: 10.3969/j.issn.1002-137X.2011.01.008
    [2]
    Stephen H U. A study of asynchronous logical feedback networks, technical reports vol. 320[R]. Cambridge, MA: Massachusetts Institute of Technology, Research Laboratory of Electronics, 1957
    [3]
    Zhao Qiulan. Ranking tournaments with no errors[D]. Hong Kong: University of Hong Kong, 2017
    [4]
    Ailon N, Charikar M, Newman A. Aggregating inconsistent information: Ranking and clustering[J]. Journal of the ACM, 2008, 55(5): 1−27
    [5]
    Kunzmann A, Wunderlich H J. An analytical approach to the partial scan problem[J]. Journal of Electronic Testing, 1990, 1(2): 163−174 doi: 10.1007/BF00137392
    [6]
    Kim J L, Peled U N, Perepelitsa I, et al. Explicit construction of families of LDPC codes with no 4-cycles[J]. IEEE Transactions on Information Theory, 2004, 50(10): 2378−2388 doi: 10.1109/TIT.2004.834760
    [7]
    Park H, Hong S, No J S, et al. Design of multiple-edge protographs for QC LDPC codes avoiding short inevitable cycles[J]. IEEE Transactions on Information Theory, 2013, 59(7): 4598−4614 doi: 10.1109/TIT.2013.2250574
    [8]
    Minoura T. Deadlock avoidance revisited[J]. Journal of the ACM, 1982, 29(4): 1023−1048 doi: 10.1145/322344.322351
    [9]
    曹玖新,高庆清,夏蓉清,等. 社交网络信息传播预测与特定信息抑制[J]. 计算机研究与发展,2021,58(7):1490−1503 doi: 10.7544/issn1000-1239.2021.20200809

    Cao Jiuxin, Gao Qingqing, Xia Rongqing, et al. Information propagation prediction and specific information suppression in social networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490−1503 (in Chinese) doi: 10.7544/issn1000-1239.2021.20200809
    [10]
    朱军,胡文波. 贝叶斯机器学习前沿进展综述[J]. 计算机研究与发展,2015,52(1):16−26 doi: 10.7544/issn1000-1239.2015.20140107

    Zhu Jun, Hu Wenbo. Recent advances in Bayesian machine learning[J]. Journal of Computer Research and Development, 2015, 52(1): 16−26 (in Chinese) doi: 10.7544/issn1000-1239.2015.20140107
    [11]
    崔焕庆,吴哲辉. 并行程序Petri网模型的结构性质[J]. 计算机研究与发展,2007,44(12):2130−2135 doi: 10.1360/crad20071220

    Cui Huanqing, Wu Zhehui. Structural properties of parallel program's Petri net model[J]. Journal of Computer Research and Development, 2007, 44(12): 2130−2135 (in Chinese) doi: 10.1360/crad20071220
    [12]
    Kemeny J G. Mathematics without numbers[J]. Daedalus, 1959, 88(4): 577−591
    [13]
    Dechter R. Enhancement schemes for constraint processing: Back-jumping, learning, and cutset decomposition[J]. Artificial Intelligence, 1990, 41(3): 273−312 doi: 10.1016/0004-3702(90)90046-3
    [14]
    Bar-Yehuda R, Geiger D, Naor J, et al. Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference[J]. SIAM Journal on Computing, 1998, 27(4): 942−959 doi: 10.1137/S0097539796305109
    [15]
    Kratsch S, Schweitzer P. Isomorphism for graphs of bounded feedback vertex set number[G]//LNCS 6139: Proc of the 12th Scandinavian Symp and Workshops on Algorithm Theory (SWAT). Berlin: Springer, 1995: 81−92
    [16]
    Karp R. Reducibility among combinatorial problem[C]//Proc of a Symp on the Complexity of Computer Computations. Berlin: Springer, 1972: 85–103
    [17]
    Even G, Naor J, Schieber B, et al. Approximating minimum feedback sets and multicuts in directed graphs[J]. Algorithmica, 1998, 20(2): 151−174 doi: 10.1007/PL00009191
    [18]
    Even G, Naor J, Zosin L. An 8-approximation algorithm for the subset feedback vertex set problem[J]. SIAM Journal on Computing, 2000, 30(4): 1231−1252 doi: 10.1137/S0097539798340047
    [19]
    Xiao Mingyu, Nagamochi H. An FPT algorithm for edge subset feedback edge set[J]. Information Processing Letters, 2012, 112(1/2): 5−9
    [20]
    Chitnis R, Cygan M, Hajiaghayi M, et al. Directed subset feedback vertex set is fixed-parameter tractable[J]. ACM Transactions on Algorithms, 2015, 11(4): 1−28
    [21]
    Iwata Y, Kobayashi Y. Improved analysis of highest-degree branching for feedback vertex set[J]. Algorithmica, 2021, 83(8): 2503−2520 doi: 10.1007/s00453-021-00815-w
    [22]
    Fomin F V, Gaspers S, Lokshtanov D, et al. Exact algorithms via monotone local search[J]. Journal of the ACM, 2019, 66(2): 1−23
    [23]
    Li J, Nederlof J. Detecting feedback vertex sets of size k in O*(2.7 k) time[J]. ACM Transactions on Algorithms, 2022, 18(4): 1−26
    [24]
    Bafna V, Berman P, Fujito T. A 2-approximation algorithm for the undirected feedback vertex set problem[J]. SIAM Journal on Discrete Mathematics, 1999, 12(3): 289−297 doi: 10.1137/S0895480196305124
    [25]
    Chen Jianer, Liu Yang, Lu Songjian, et al. A fixed-parameter algorithm for the directed feedback vertex set problem[J]. Journal of the ACM, 2008, 55(5): 177−186
    [26]
    Razgon I. Computing minimum directed feedback vertex set in O*(1.9977n)[C]//Proc of the 10th Italian Conf on Theoretical Computer Science. Singapore: World Scientific, 2007: 70−81
    [27]
    Seymour P D. Packing directed circuits fractionally[J]. Combinatorica, 1995, 15(2): 281−288 doi: 10.1007/BF01200760
    [28]
    Even G, Naor J, Schieber B, et al. Approximating minimum feedback sets and multi-cuts in directed graphs: Extended summary[G]//LNCS 920: Proc of the 4th Int Conf on Integer Programming and Combinatorial Optimization (IPCO). Berlin: Springer, 1995: 14−28
    [29]
    Lawler E. A comment on minimum feedback arc sets[J]. IEEE Transactions on Circuit Theory, 1964, 11(2): 296−297 doi: 10.1109/TCT.1964.1082291
    [30]
    Bodlaender H L, Fomin F V, Koster A M C A, et al. A note on exact algorithms for vertex ordering problems on graphs[J]. Theory of Computing Systems, 2012, 50(3): 420−432 doi: 10.1007/s00224-011-9312-0
    [31]
    Cygan M, Pilipczuk M, Pilipczuk M, et al. On multiway cut parameterized above lower bounds[J]. ACM Transactions on Computation Theory, 2013, 5(1): 1−11
    [32]
    Karger D R, Klein P, Stein C, et al. Rounding algorithms for a geometric embedding of minimum multiway cut[J]. Mathematics of Operations Research, 2004, 29(3): 436−461. doi: 10.1287/moor.1030.0086
    [33]
    Chen Li, Kyng R, Liu Y P, et al. Maximum flow and minimum-cost flow in almost-linear time[C]//Proc of the 63rd Annual Symp on Foundations of Computer Science (FOCS). Los Alamitos, CA: IEEE Computer Society, 2022: 612−623
    [34]
    Iwata Y, Yamaguchi Y, Yoshida Y. 0/1/all CSPs, half-integral A-path packing, and linear-time FPT algorithms[C]// Proc of the 59th IEEE Annual Symp on Foundations of Computer Science (FOCS). Los Alamitos, CA: IEEE Computer Society, 2018: 462−473
    [35]
    Even G, Naor J, Schieber B, et al. Approximating minimum subset feedback sets in undirected graphs with applications[J]. SIAM Journal on Discrete Mathematics, 2000, 13(2): 255−267 doi: 10.1137/S0895480195291874
    [36]
    Garg N, Vazirani V V, Yannakakis M. Multiway cuts in node weighted graphs[J]. Journal of Algorithms, 2004, 50(1): 49−61 doi: 10.1016/S0196-6774(03)00111-1
    [37]
    Chitnis R, Fomin F V, Lokshtanov D, et al. Faster exact algorithms for some terminal set problems[J]. Journal of Computer and System Sciences, 2017, 88(3): 195−207
    [38]
    Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness[M]. San Francisco, CA: W. H. Freeman, 1979: 191−192
    [39]
    Speckenmeyer E. Untersuchungen zum feedback vertex set problem in ungerichteten graphen[D]. Paderborn: Universität Paderborn, 1983
    [40]
    Ueno S, Kajitani Y, Gotoh S. On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three[J]. Discrete Mathematics, 1988, 72(1/2/3): 355−360
    [41]
    Gabow H N, Stallmann M. Efficient algorithms for graphic matroid intersection and parity (extended abstract)[G]∥LNCS 194: Proc of the 12th Int Colloquium on Automata, Languages, and Programming (ICALP). Berlin: Springer, 1985: 210−220
    [42]
    Yannakais M. Node-and edge-deletion NP-complete problems[C]//Proc of the 10th Annual ACM Symp on Theory of Computing (STOC). New York: ACM, 1978: 253−264
    [43]
    Lucchesi C L, Younger D H. A minimax theorem for directed graphs[J]. Journal of the London Mathematical Society, 1978, 2(3): 369−374
    [44]
    Gabow H N. A framework for cost-scaling algorithms for submodular flow problems[C]//Proc of the 34th Annual Symp on Foundations of Computer Science (FOCS). Los Alamitos, CA: IEEE Computer Society, 1993: 449−458
    [45]
    Cavallaro von D. Hamiltonicity and the computational complexity of graph problems[D]. Berlin: Technische Universität Berlin, 2019
    [46]
    Appel K, Haken W. Every planar map is four colorable. Part I: Discharging[J]. Illinois Journal of Mathematics, 1977, 21(3): 429−490
    [47]
    Appel K, Haken W, Koch J. Every planar map is four colorable. Part II: Reducibility[J]. Illinois Journal of Mathematics, 1977, 21(3): 491−567
    [48]
    Robertson N, Sanders D P, Seymour P, et al. Efficiently four-coloring planar graphs[C]//Proc of the 28th Annual ACM Symp on Theory of Computing (STOC). New York: ACM, 1996: 571−575
    [49]
    Speckenmeyer E. On feedback problems in digraphs[G]//LNCS 484: Proc of the 15th Int Workshop of Graph-Theoretic Concepts in Computer Science (WG). Berlin: Springer. 1989: 218−231
    [50]
    Cai Maocheng, Deng Xiaotie, Zang Wenan. A min-max theorem on feedback vertex sets[J]. Mathematics of Operations Research, 2002, 27(2): 361−371 doi: 10.1287/moor.27.2.361.328
    [51]
    Alon N. Ranking tournaments[J]. SIAM Journal on Discrete Mathematics, 2006, 20(1): 137−142 doi: 10.1137/050623905
    [52]
    Charbit P, Thomasse S, Yeo A. The minimum feedback arc set problem is NP-hard for tournaments[J]. Combinatorics, Probability and Computing, 2007, 16(1): 1−4 doi: 10.1017/S0963548306007887
    [53]
    Conitzer V. Computing Slater rankings using similarities among candidates[C]//Proc of the 21st National Conf on Artificial Intelligence (AAAI). Palo Alto, CA: AAAI, 2006: 613−619
    [54]
    Guo Jong, Huffner F, Moser H. Feedback arc set in bipartite tournaments is NP-complete[J]. Information Processing Letters, 2007, 102(2/3): 62−65
    [55]
    Brandstädt A, Kratsch D. On the restriction of some NP-complete graph problems to permutation graphs[G]//LNCS 199: Proc of the Int Conf on Fundamentals of Computation Theory (FCT). Berlin: Springer, 1985: 53−62
    [56]
    Brandstädt A, Kratsch D. On domination problems for permutation and other graphs[J]. Theoretical Computer Science, 1987, 54(2/3): 181−198
    [57]
    Brandstädt A. On improved time bounds for permutation graph problems[G]//LNCS 657: Proc of the 18th Int Workshop Graph-Theoretic Concepts in Computer Science (WG). Berlin: Springer, 1992: 1−10
    [58]
    Liang Y D. On the feedback vertex set problem in permutation graphs[J]. Information Processing Letters, 1994, 52(3): 123−129 doi: 10.1016/0020-0190(94)00133-2
    [59]
    Honma H, Kitamura Y, Masuyama S. An algorithm for minimum feedback vertex set problem on a trapezoid graph[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, 94(6): 1381−1385
    [60]
    Takaoka A, Yayu S, Ueno S. On minimum feedback vertex sets in bipartite graphs and degree-constraint graphs[J]. IEICE Transactions on Information and Systems, 2013, 96(11): 2327−2332
    [61]
    Coorg S R, Rangan C P. Feedback vertex set on cocomparability graphs[J]. Networks, 1995, 26(2): 101−111 doi: 10.1002/net.3230260205
    [62]
    Liang Y D, Chang Mawshang. Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs[J]. Acta Informatica, 1997, 34(5): 337−346 doi: 10.1007/s002360050088
    [63]
    Gavril F. Minimum weight feedback vertex sets in circle n-gon graphs and circle trapezoid graphs[J]. Discrete Mathematics, Algorithms and Applications, 2011, 3(3): 323−336 doi: 10.1142/S1793830911001243
    [64]
    Papadopoulos C, Tzimas S. Polynomial-time algorithms for the subset feedback vertex set problem on interval graphs and permutation graphs[J]. Discrete Applied Mathematics, 2019, 258(4): 204−221
    [65]
    Yannakakis M, Gavril F. The maximum k-colorable subgraph problem for chordal graphs[J]. Information Processing Letters, 1987, 24(2): 133−137 doi: 10.1016/0020-0190(87)90107-4
    [66]
    Lu Chinlung, Tang Chuanyi. A linear-time algorithm for the weighted feedback vertex problem on interval graphs[J]. Information Processing Letters, 1997, 61(2): 107−111 doi: 10.1016/S0020-0190(96)00193-7
    [67]
    Fomin F V, Heggernes P, Kratsch D, et al. Enumerating minimal subset feedback vertex sets[J]. Algorithmica, 2014, 69(1): 216−231 doi: 10.1007/s00453-012-9731-6
    [68]
    Bai Tian, Xiao Mingyu. Exact and parameterized algorithms for restricted subset feedback vertex set in chordal graphs[G]//LNCS 13571: Proc of the 17th Annual Conf on Theory and Applications of Models of Computation (TAMC). Berlin: Springer, 2023: 249−261
    [69]
    Marathe M V, Ravi R, Rangan C P. Generalized vertex covering in interval graphs[J]. Discrete Applied Mathematics, 1992, 39(1): 87−93 doi: 10.1016/0166-218X(92)90116-R
    [70]
    Kratsch D, Muller H, Todinca I. Feedback vertex set on AT-free graphs[J]. Discrete Applied Mathematics, 2008, 156(10): 1936−1947 doi: 10.1016/j.dam.2007.10.006
    [71]
    Poljak S. A note on stable sets and colorings of graphs[J]. Commentationes Mathematicae Niversitatis Carolinae, 1974, 15(2): 307−309
    [72]
    Munaro A. On line graphs of subcubic triangle-free graphs[J]. Discrete Mathematics, 2017, 340(6): 1210−1226 doi: 10.1016/j.disc.2017.01.006
    [73]
    Chiarelli N, Hartinger T R, Johnson M, et al. Minimum connected transversals in graphs: New hardness results and tractable cases using the price of connectivity[J]. Theoretical Computer Science, 2018, 705: 75−83 doi: 10.1016/j.tcs.2017.09.033
    [74]
    Dabrowski K K, Fehali C, Johnson M, et al. On cycle transversals and their connected variants in the absence of a small linear forest[J]. Algorithmica, 2020, 82(10): 2841−2866 doi: 10.1007/s00453-020-00706-6
    [75]
    Abrishami T, Chudnovsky M, Pilipczuk M, et al. Induced subgraphs of bounded treewidth and the container method[C]//Proc of the 2021 ACM-SIAM Symp on Discrete Algorithms (SODA). Philadelphia, PA: SIAM, 2021: 1948−1964
    [76]
    Paesani G, Paulusma D, Rzazwski P. Feedback vertex set and even cycle transversal for H-free graphs: Finding large block graphs[J]. SIAM Journal on Discrete Mathematics, 2022, 36(4): 2453−2472 doi: 10.1137/22M1468864
    [77]
    Paesani G, Paulusma D, Rzazwski P. Classifying subset feedback vertex set for H-free graphs[G]//LNCS 13453: Proc of the 48th Int Workshop Graph-Theoretic Concepts in Computer Science (WG). Berlin: Springer, 2022: 412−424
    [78]
    Jiang Wei, Liu Tian, Xu Ke. Tractable feedback vertex sets in restricted bipartite graphs[G]//LNCS 6831: Proc of the 5th Int Conf Combinatorial Optimization and Applications (COCOA). Berlin: Springer, 2011: 424−434
    [79]
    Jiang Wei, Liu Tian, Ren Tienan, et al. Two hardness results on feedback vertex sets[G]//LNCS 6681: Proc of Joint Int Conf on Frontiers in Algorithmics and Algorithmic Aspects in Information and Management (FAW-AAIM). Berlin: Springer, 2011: 233−243
    [80]
    Kloks T, Liu Chinghao, Poon Sheunghung. Feedback vertex set on chordal bipartite graphs[J]. arXiv preprint, arXiv: 1104.3915, 2011
    [81]
    Jiang Wei, Liu Tian, Wang Chaoyi, et al. Feedback vertex sets on restricted bipartite graphs[J]. Theoretical Computer Science, 2013, 507: 41−51 doi: 10.1016/j.tcs.2012.12.021
    [82]
    Liu Tian, Lu Min, Lu Zhao, et al. Circular convex bipartite graphs: Feedback vertex sets[J]. Theoretical Computer Science, 2014, 556: 55−62 doi: 10.1016/j.tcs.2014.05.001
  • Related Articles

    [1]Li Nan, Ding Yidong, Jiang Haoyu, Niu Jiafei, Yi Ping. Jailbreak Attack for Large Language Models: A Survey[J]. Journal of Computer Research and Development, 2024, 61(5): 1156-1181. DOI: 10.7544/issn1000-1239.202330962
    [2]Wang Mengru, Yao Yunzhi, Xi Zekun, Zhang Jintian, Wang Peng, Xu Ziwen, Zhang Ningyu. Safety Analysis of Large Model Content Generation Based on Knowledge Editing[J]. Journal of Computer Research and Development, 2024, 61(5): 1143-1155. DOI: 10.7544/issn1000-1239.202330965
    [3]Chen Xuanting, Ye Junjie, Zu Can, Xu Nuo, Gui Tao, Zhang Qi. Robustness of GPT Large Language Models on Natural Language Processing Tasks[J]. Journal of Computer Research and Development, 2024, 61(5): 1128-1142. DOI: 10.7544/issn1000-1239.202330801
    [4]Chen Huimin, Liu Zhiyuan, Sun Maosong. The Social Opportunities and Challenges in the Era of Large Language Models[J]. Journal of Computer Research and Development, 2024, 61(5): 1094-1103. DOI: 10.7544/issn1000-1239.202330700
    [5]Yang Yi, Li Ying, Chen Kai. Vulnerability Detection Methods Based on Natural Language Processing[J]. Journal of Computer Research and Development, 2022, 59(12): 2649-2666. DOI: 10.7544/issn1000-1239.20210627
    [6]Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209
    [7]Zheng Haibin, Chen Jinyin, Zhang Yan, Zhang Xuhong, Ge Chunpeng, Liu Zhe, Ouyang Yike, Ji Shouling. Survey of Adversarial Attack, Defense and Robustness Analysis for Natural Language Processing[J]. Journal of Computer Research and Development, 2021, 58(8): 1727-1750. DOI: 10.7544/issn1000-1239.2021.20210304
    [8]Pan Xudong, Zhang Mi, Yan Yifan, Lu Yifan, Yang Min. Evaluating Privacy Risks of Deep Learning Based General-Purpose Language Models[J]. Journal of Computer Research and Development, 2021, 58(5): 1092-1105. DOI: 10.7544/issn1000-1239.2021.20200908
    [9]Bao Yang, Yang Zhibin, Yang Yongqiang, Xie Jian, Zhou Yong, Yue Tao, Huang Zhiqiu, Guo Peng. An Automated Approach to Generate SysML Models from Restricted Natural Language Requirements in Chinese[J]. Journal of Computer Research and Development, 2021, 58(4): 706-730. DOI: 10.7544/issn1000-1239.2021.20200757
    [10]Che Haiyan, Feng Tie, Zhang Jiachen, Chen Wei, and Li Dali. Automatic Knowledge Extraction from Chinese Natural Language Documents[J]. Journal of Computer Research and Development, 2013, 50(4): 834-842.
  • Cited by

    Periodical cited type(66)

    1. 袁良志,海佳丽,汪润,邓文萍,肖勇,常凯. 知识图谱驱动的中医药标准数字化探索与实践. 中医药导报. 2025(01): 225-230 .
    2. 范定容,王倩倩,沈奥,彭露. 从ChatGPT到Sora:人工智能在医学教育中的应用潜力与挑战. 中国医学教育技术. 2025(01): 33-40 .
    3. 刘园园,王银刚. ChatGPT影响大学生判断能力:双向机理与对策. 湖北成人教育学院学报. 2025(01): 29-34 .
    4. 魏昱,刘卫. 人工智能生成内容在服装设计中的应用现状. 毛纺科技. 2025(01): 134-142 .
    5. 李冰,鲜勇,雷刚,苏娟. ChatGPT架构下课程智能教学助手建设探讨. 教育教学论坛. 2025(03): 45-48 .
    6. 梁炜,许振宇. 大语言模型赋能舆情治理现代化:价值、风险与路径. 中国应急管理科学. 2025(01): 93-103 .
    7. 刘邦奇,聂小林,王士进,袁婷婷,朱洪军,赵子琪,朱广袤. 生成式人工智能与未来教育形态重塑:技术框架、能力特征及应用趋势. 电化教育研究. 2024(01): 13-20 .
    8. 秦涛,杜尚恒,常元元,王晨旭. ChatGPT的工作原理、关键技术及未来发展趋势. 西安交通大学学报. 2024(01): 1-12 .
    9. 张小朝. AIGC在商旅行业中的应用探索. 广东通信技术. 2024(01): 75-79 .
    10. 廉霄兴,宋勇,朱军,王淑玲,叶晓舟,欧阳晔. 基于双通道理论的通信认知增强技术研究. 电信科学. 2024(01): 123-135 .
    11. 杨永恒. 人工智能时代社会科学研究的“变”与“不变”. 人民论坛·学术前沿. 2024(04): 96-105 .
    12. 刘英祥,张琳. 生成式人工智能技术在海事管理工作中的应用探索. 航海. 2024(02): 62-64 .
    13. 吕静,何平,王永芬,冉朝霞,曹钦兴,古文帆,彭敏,田敏. ChatGPT在医学领域研究态势的文献计量学分析. 医学与哲学. 2024(07): 30-35 .
    14. 王益君,董韵美. 公众对人工智能的认知与情感态度——以ChatGPT为例. 知识管理论坛. 2024(01): 16-29 .
    15. 陈雷. ChatGPT在公安院校教育教学中的应用及影响. 太原城市职业技术学院学报. 2024(02): 85-88 .
    16. 尤冲,李彦兵. 基于ChatGPT大语言模型应用的公共体育服务智能化:指征、风险及其规制. 南京体育学院学报. 2024(02): 1-12 .
    17. 杨胜钦. 从ChatGPT看AI对电信网络诈骗犯罪治理的影响. 犯罪与改造研究. 2024(05): 26-33 .
    18. 王春英,姚亚妮,滕白莹. 生成式人工智能嵌入敏捷政府建设:影响、风险与应对. 北京行政学院学报. 2024(03): 73-83 .
    19. 王雯,李永智. 国际生成式人工智能教育应用与省思. 开放教育研究. 2024(03): 37-44 .
    20. 张智义. 体认语言学视阈下ChatGPT语言生成及性能研究. 外语研究. 2024(03): 20-25+43+112 .
    21. 余淑珍,单俊豪,闫寒冰. 情感计算赋能个性化教学:逻辑框架、问题解构与多元重塑. 现代远距离教育. 2024(02): 53-61 .
    22. 高尚. 大语言模型与中台:共融还是替代?. 科技与金融. 2024(05): 59-62 .
    23. 郭亚军,马慧芳,张鑫迪,冯思倩. ChatGPT赋能图书馆知识服务:原理、场景与进路. 图书馆建设. 2024(03): 60-68 .
    24. 高雪松,黄蕴华,王斌. 基于专利数据的生成式人工智能技术栈创新态势研究. 东北财经大学学报. 2024(04): 53-61 .
    25. 张渊. ChatGPT文本的生成机制与文本特性分析. 重庆文理学院学报(社会科学版). 2024(04): 105-114 .
    26. 罗仕鉴,于慧伶,易珮琦. 数智时代工业设计知识生产新范式. 机械设计. 2024(08): 6-10 .
    27. 徐炳文. 基于ChatGPT的人工智能交互技术工业物联网平台研究. 工业控制计算机. 2024(08): 132-134 .
    28. Deyi Li,Jialun Yin,Tianlei Zhang,Wei Han,Hong Bao. The Four Most Basic Elements In Machine Cognition. Data Intelligence. 2024(02): 297-319 .
    29. 黄语,刘海洋,常海军,杨远松. 基于ChatGPT工作模式的AI工具在BIM技术中的潜在应用与实现途径. 科技创新与应用. 2024(26): 181-184+188 .
    30. 李琳娜,丁楷,韩红旗,王力,李艾丹. 基于知识图谱的中文科技文献问答系统构建研究. 中国科技资源导刊. 2024(04): 51-62 .
    31. 裴炳森,李欣,蒋章涛,刘明帅. 基于大语言模型的公安专业小样本知识抽取方法研究. 计算机科学与探索. 2024(10): 2630-2642 .
    32. 李克寒,余丽媛,邵企能,蒋可,乌丹旦. 大语言模型在口腔住院医师规范化培训中的应用构想. 中国卫生产业. 2024(07): 155-158 .
    33. 钟厚涛. 生成式人工智能给翻译实践带来的机遇与挑战. 北京翻译. 2024(00): 238-250 .
    34. 张夏恒,马妍. AIGC在应急情报服务中的应用研究. 图书馆工作与研究. 2024(11): 60-67 .
    35. 崔金满,李冬梅,田萱,孟湘皓,杨宇,崔晓晖. 提示学习研究综述. 计算机工程与应用. 2024(23): 1-27 .
    36. 周代数,魏杉汀. 人工智能驱动的科学研究第五范式:演进、机制与影响. 中国科技论坛. 2024(12): 97-107 .
    37. 钱力,张智雄,伍大勇,常志军,于倩倩,胡懋地,刘熠. 科技文献大模型:方法、框架与应用. 中国图书馆学报. 2024(06): 45-58 .
    38. 潘崇佩,廖康启,孔勇发. 生成式人工智能背景下的近代物理实验教学改革. 实验室研究与探索. 2024(12): 117-122 .
    39. 李德毅,刘玉超,殷嘉伦. 认知机器如何创造. 中国基础科学. 2024(06): 1-11 .
    40. 李德毅,张天雷,韩威,海丹,鲍泓,高洪波. 认知机器的结构和激活. 智能系统学报. 2024(06): 1604-1613 .
    41. 蔡昌,庞思诚. ChatGPT的智能性及其在财税领域的应用. 商业会计. 2023(09): 41-46 .
    42. 于书娟,卢小雪,赵磊磊. 教育人工智能变革的基本逻辑与发展进路. 当代教育科学. 2023(05): 40-49 .
    43. 曹克亮. ChatGPT:意识形态家的机器学转向及后果. 统一战线学研究. 2023(04): 134-144 .
    44. 宋恺,屈蕾蕾,杨萌科. 生成式人工智能的治理策略研究. 信息通信技术与政策. 2023(07): 83-88 .
    45. 陈凌云,姚宽达,王茜,方安,李刚. ChatGPT:研究进展、模型创新及医学信息研究应用场景优化. 医学信息学杂志. 2023(07): 18-23+29 .
    46. 彭强,李羿卫. 自然用户界面在智能家居系统中的应用路径创新研究:生成式人工智能技术的调节作用. 包装工程. 2023(16): 454-463 .
    47. 杨军农,王少波. 类ChatGPT技术嵌入政务服务网的应用场景、风险隐患与实施建议. 信息与电脑(理论版). 2023(10): 183-186 .
    48. 政光景,吕鹏. 生成式人工智能与哲学社会科学新范式的涌现. 江海学刊. 2023(04): 132-142+256 .
    49. 吴梦妮. 社交媒体传播视域下玩具企业应用AI技术实施营销的实践路径. 玩具世界. 2023(04): 144-146 .
    50. 李德毅,殷嘉伦,张天雷,韩威,鲍泓. 机器认知四要素说. 中国基础科学. 2023(03): 1-10+22 .
    51. 王洁. ChatGPT对知识服务的五大变革. 图书馆. 2023(09): 10-16 .
    52. 刘乃嘉. 基于ChatGPT的矿山工程风险评估预警系统实现探讨. 企业科技与发展. 2023(08): 44-47 .
    53. 裴炳森,李欣,吴越. 基于ChatGPT的电信诈骗案件类型影响力评估. 计算机科学与探索. 2023(10): 2413-2425 .
    54. 张新新,丁靖佳. 生成式智能出版的技术原理与流程革新. 图书情报知识. 2023(05): 68-76 .
    55. 张新新,黄如花. 生成式智能出版的应用场景、风险挑战与调治路径. 图书情报知识. 2023(05): 77-86+27 .
    56. 陈靖. ChatGPT的类人想象与安全风险分析. 网络空间安全. 2023(04): 8-12 .
    57. 李佩芳,陈佳丽,宁宁,王立群,张涵旎. ChatGPT在医学领域的应用进展及思考. 华西医学. 2023(10): 1456-1460 .
    58. 朱敏锐,郜云帆,黄勇. 以新时代优良学风涵养新时代外语人才. 北京教育(高教). 2023(11): 35-37 .
    59. 丁红菊. 消解与重构:人工智能技术对新闻业的影响——基于对ChatGPT的研究. 运城学院学报. 2023(05): 57-62 .
    60. 李钥,淮盼盼,杨辉. ChatGPT在护理教育中的应用状况及优劣分析. 护理学杂志. 2023(21): 117-121 .
    61. 张绍龙. 基于ChatGPT的人工智能技术应用. 集成电路应用. 2023(11): 200-201 .
    62. 崔克克,孙冲,李辉,赵凌飞. 浅谈水泥企业数字化转型发展. 中国水泥. 2023(12): 28-33 .
    63. 单琳,王文娟,刘舒萌. ChatGPT在医学分子生物学教学中的应用. 基础医学教育. 2023(12): 1084-1086 .
    64. 李德毅,刘玉超,任璐. 人工智能看智慧. 科学与社会. 2023(04): 131-149 .
    65. 付翔,魏晓伟,张浩,徐宁. 数字安全角度下审视和剖析ChatGPT. 航空兵器. 2023(06): 117-122 .
    66. 黄婷,刘力凯. 基于大模型的数智化语言教学探索与应用. 连云港职业技术学院学报. 2023(04): 73-79 .

    Other cited types(0)

Catalog

    Article views (126) PDF downloads (30) Cited by(66)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return