• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xu Ming, Fan Yimeng, Jiang Changjun. Time-Varying Underwater Acoustic Channel Based Physical Layer Secret Key Generation Scheme[J]. Journal of Computer Research and Development, 2019, 56(12): 2660-2670. DOI: 10.7544/issn1000-1239.2019.20190040
Citation: Xu Ming, Fan Yimeng, Jiang Changjun. Time-Varying Underwater Acoustic Channel Based Physical Layer Secret Key Generation Scheme[J]. Journal of Computer Research and Development, 2019, 56(12): 2660-2670. DOI: 10.7544/issn1000-1239.2019.20190040

Time-Varying Underwater Acoustic Channel Based Physical Layer Secret Key Generation Scheme

More Information
  • Published Date: November 30, 2019
  • With the continuous development of wireless networks, the security of physical layer has gradually become the focus of widespread concern. Concerning the problem of how to extract a highly confidential key from the source information when legitimate nodes have more uncertainty than that of eavesdropping node under the circumstances of multipath and Doppler effects in underwater acoustic channel, a time-varying underwater acoustic channel based physical layer secret key generation scheme is proposed. For the first time, the α order Rényi entropy with multipath and Doppler effects is accurately depicted, and the uncertainty of the source sequence from the legitimate nodes and the eavesdropping node is also obtained. On this basis, a key agreement protocol with strong security is proposed, which uses Hash function to construct one-variable high-order polynomial to complete identity authentication for both sides of communication and to realize secure transmission of index sequence and preselected key under the public channel. Moreover, a privacy amplification protocol against active attacks is designed using bilinear mapping, which does not depend on the length and randomness of the random seed. The robustness, confidentiality and correctness of the scheme are proved by the information theory. The simulation results show that the upper bound of key leakage rate is 3.74×10\+\{-6\} and the upper bound of active attack success rate is 5.468×10\+\{-20\} when the amount of the source information is 50 000 b, which verifies the feasibility of the proposed scheme.
  • Related Articles

    [1]Bai Tian, Xiao Mingyu. Computational Complexity of Feedback Set and Subset Feedback Set Problems: A Survey[J]. Journal of Computer Research and Development, 2025, 62(1): 104-118. DOI: 10.7544/issn1000-1239.202330693
    [2]Zhang Tianming, Zhao Jie, Jin Lu, Chen Lu, Cao Bin, Fan Jing. Vertex Betweenness Centrality Computation Method over Temporal Graphs[J]. Journal of Computer Research and Development, 2023, 60(10): 2383-2393. DOI: 10.7544/issn1000-1239.202220650
    [3]Zhu Xia, Luo Junzhou, Song Aibo, and Dong Fang. A Multi-Dimensional Indexing for Complex Query in Cloud Computing[J]. Journal of Computer Research and Development, 2013, 50(8): 1592-1603.
    [4]Wang Zhuxiao, Hu Hong, Chen Limin, Shi Zhongzhi. Parallel Computation Techniques for Dynamic Description Logics Reasoning[J]. Journal of Computer Research and Development, 2011, 48(12): 2317-2325.
    [5]Zhang Yu, Liu Ping, Liu Yanbing, Tan Jianlong, Guo Li. Algorithmic Complexity Attacks Against WuManber[J]. Journal of Computer Research and Development, 2011, 48(8): 1381-1389.
    [6]Lu Jiyuan, Zhang Peizhao, Duan Xiaohua, Chao Hongyang. An Optimized Motion Estimation Algorithm Based on Macroblock Priorities[J]. Journal of Computer Research and Development, 2011, 48(3): 494-500.
    [7]Lin Xin, Li Shanping, Yang Zhaohui, Xu Jian. A Reasoning-Oriented Context Replacement Algorithm in Pervasive Computing[J]. Journal of Computer Research and Development, 2009, 46(4): 549-557.
    [8]Huang Han, Hao Zhifeng, Qin Yong. Time Complexity of Evolutionary Programming[J]. Journal of Computer Research and Development, 2008, 45(11): 1850-1857.
    [9]Tian Mei, Luo Siwei, Huang Yaping, and Zhao Jiali. Extracting Bottom-Up Attention Information Based on Local Complexity and Early Visual Features[J]. Journal of Computer Research and Development, 2008, 45(10): 1739-1746.
    [10]Pan Rui, Zhu Daming, and Ma Shaohan. Research on Computational Complexity and Approximation Algorithm for General Facility Location Problem[J]. Journal of Computer Research and Development, 2007, 44(5): 790-797.

Catalog

    Article views (856) PDF downloads (240) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return