• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Shi Wenhao, Meng Jun, Zhang Peng, Liu Chanjuan. Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM[J]. Journal of Computer Research and Development, 2019, 56(8): 1652-1660. DOI: 10.7544/issn1000-1239.2019.20190128
Citation: Shi Wenhao, Meng Jun, Zhang Peng, Liu Chanjuan. Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM[J]. Journal of Computer Research and Development, 2019, 56(8): 1652-1660. DOI: 10.7544/issn1000-1239.2019.20190128

Prediction of miRNA-lncRNA Interaction by Combining CNN and Bi-LSTM

More Information
  • Published Date: July 31, 2019
  • Non-coding RNA (ncRNA) plays an important regulatory role in many animal and plant life activities, and the interaction of microRNA (miRNA) and long non-coding RNA (lncRNA) is more important. The study of their interaction not only helps to analyze the biological functions of genes, but also provides new ideas for disease diagnosis and treatment and plant genetic breeding. At present, biological experiments and machine learning methods are mostly used to predict miRNA-lncRNA interaction. Due to high cost and time consuming of biological identification and the excessive manual intervention of machine learning and the complex feature extraction process, a deep learning model combining convolutional neural network (CNN) and bidirectional long short-term memory network (Bi-LSTM) is proposed. It combines the advantages of two models, considering the information correlation between sequences and combining context information, and fully extracting features between sequence data. In the experiment, the performance of model is evaluated by cross-validation, compared with the traditional machine learning methods and single model on zea mays dataset, and the superior classification effect is obtained. In addition, the model tests of solanum tuberosum and triticum aestivum species are carried out, and the accuracy rates are up to 95% and 93%, respectively, which verifies good generalization ability of the model.
  • Related Articles

    [1]Tian Xuan, Xu Zezhou, Wang Zihan. Review of Deep Learning Based Query Suggestion[J]. Journal of Computer Research and Development, 2024, 61(12): 3168-3187. DOI: 10.7544/issn1000-1239.202220837
    [2]Zhang Yang, Qiao Liu, Dong Chunhao, Gao Hongbin. Deep Learning Based Data Race Detection Approach[J]. Journal of Computer Research and Development, 2022, 59(9): 1914-1928. DOI: 10.7544/issn1000-1239.20220014
    [3]Cai Derun, Li Hongyan. A Metric Learning Based Unsupervised Domain Adaptation Method with Its Application on Mortality Prediction[J]. Journal of Computer Research and Development, 2022, 59(3): 674-682. DOI: 10.7544/issn1000-1239.20200693
    [4]Yu Ying, Zhu Huilin, Qian Jin, Pan Cheng, Miao Duoqian. Survey on Deep Learning Based Crowd Counting[J]. Journal of Computer Research and Development, 2021, 58(12): 2724-2747. DOI: 10.7544/issn1000-1239.2021.20200699
    [5]Zhang Litian, Kong Jiayi, Fan Yihang, Fan Lingjun, Bao Ergude. Car Accident Prediction Based on Macro and Micro Factors in Probability Level[J]. Journal of Computer Research and Development, 2021, 58(9): 2052-2061. DOI: 10.7544/issn1000-1239.2021.20200345
    [6]Cheng Keyang, Wang Ning, Shi Wenxi, Zhan Yongzhao. Research Advances in the Interpretability of Deep Learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217. DOI: 10.7544/issn1000-1239.2020.20190485
    [7]Li Hongshun, Yu Hua, Gong Xiujun. A Deep Learning Model for Predicting RNA-Binding Proteins Only from Primary Sequences[J]. Journal of Computer Research and Development, 2018, 55(1): 93-101. DOI: 10.7544/issn1000-1239.2018.20160508
    [8]Zhou Ye, Zhang Junping. Multi-Scale Deep Learning for Product Image Search[J]. Journal of Computer Research and Development, 2017, 54(8): 1824-1832. DOI: 10.7544/issn1000-1239.2017.20170197
    [9]Wang Ying, Zuo Xianglin, Zuo Wanli, Wang Xin. Interface Integration of Deep Web Based on Ontology[J]. Journal of Computer Research and Development, 2012, 49(11): 2383-2394.
    [10]Shen Derong, Ma Ye, Nie Tiezheng, Kou Yue, and Yu Ge. A Query Relaxation Strategy Applied in a Deep Web Data Integration System[J]. Journal of Computer Research and Development, 2010, 47(1): 88-95.
  • Cited by

    Periodical cited type(5)

    1. 桑基韬,于剑. 从ChatGPT看AI未来趋势和挑战. 计算机研究与发展. 2023(06): 1191-1201 . 本站查看
    2. 王亚明,赵建军. 人工智能的“人工”意蕴. 科学技术哲学研究. 2022(02): 72-77 .
    3. 黄李悦,江玉琴. 技术伦理视角下阿西莫夫人机关系研究. 齐齐哈尔大学学报(哲学社会科学版). 2022(12): 9-13 .
    4. 李金海,闫梦宇,徐伟华,折延宏,张文修. 概念认知学习的若干问题与思考. 西北大学学报(自然科学版). 2020(04): 501-515 .
    5. 李金海,魏玲,张卓,翟岩慧,张涛,智慧来,米允龙. 概念格理论与方法及其研究展望. 模式识别与人工智能. 2020(07): 619-642 .

    Other cited types(5)

Catalog

    Article views (2164) PDF downloads (894) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return