• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Cai Derun, Li Hongyan. A Metric Learning Based Unsupervised Domain Adaptation Method with Its Application on Mortality Prediction[J]. Journal of Computer Research and Development, 2022, 59(3): 674-682. DOI: 10.7544/issn1000-1239.20200693
Citation: Cai Derun, Li Hongyan. A Metric Learning Based Unsupervised Domain Adaptation Method with Its Application on Mortality Prediction[J]. Journal of Computer Research and Development, 2022, 59(3): 674-682. DOI: 10.7544/issn1000-1239.20200693

A Metric Learning Based Unsupervised Domain Adaptation Method with Its Application on Mortality Prediction

Funds: This work was supported by the National Key Research and Development Program of China (2021YFE0205300) and the National Natural Science Foundation of China (62172018, 62102008).
More Information
  • Published Date: February 28, 2022
  • Deep learning models have been widely used in the field of healthcare prediction tasks and have achieved good results in recent ears. However, deep learning models often face the problems of insufficient labeled training data, the overall data distribution shift, and the category level data distribution shift, which leads to a decrease in the accuracy of the models. To solve the above problems, we propose an unsupervised domain adaptation method based on metric learning (additive margin softmax based adversarial domain adaptation, AMS-ADA). Firstly, this method uses the long short-term memory network with the attention mechanism to extract features. Secondly, this method introduces the idea of the generative adversarial network and reduces the overall data distribution shift via adversarial domain adaptation. Thirdly, this method introduces the idea of metric learning, which further reduces the category level data distribution shift by maximizing the decision boundary in the angular space. This method improves the effect of domain adaptation and the accuracy of the model. We perform the mortality prediction task of ICU patients in real-world healthcare datasets. The experimental results show that compared with other baseline models, our method can better solve the problem of data distribution shift and achieve better classification accuracy.
  • Related Articles

    [1]Guo Husheng, Zhang Yutong, Wang Wenjian. Elastic Gradient Ensemble for Concept Drift Adaptation[J]. Journal of Computer Research and Development, 2025, 62(5): 1235-1247. DOI: 10.7544/issn1000-1239.202440407
    [2]Guo Husheng, Zhang Yang, Wang Wenjian. Two-Stage Adaptive Ensemble Learning Method for Different Types of Concept Drift[J]. Journal of Computer Research and Development, 2024, 61(7): 1799-1811. DOI: 10.7544/issn1000-1239.202330452
    [3]Guo Husheng, Sun Ni, Wang Jiahao, Wang Wenjian. Concept Drift Convergence Method Based on Adaptive Deep Ensemble Networks[J]. Journal of Computer Research and Development, 2024, 61(1): 172-183. DOI: 10.7544/issn1000-1239.202220835
    [4]Guo Husheng, Cong Lu, Gao Shuhua, Wang Wenjian. Adaptive Classification Method for Concept Drift Based on Online Ensemble[J]. Journal of Computer Research and Development, 2023, 60(7): 1592-1602. DOI: 10.7544/issn1000-1239.202220245
    [5]Guo Husheng, Ren Qiaoyan, Wang Wenjian. Concept Drift Class Detection Based on Time Window[J]. Journal of Computer Research and Development, 2022, 59(1): 127-143. DOI: 10.7544/issn1000-1239.20200562
    [6]Cheng Guang, Qian Dexin, Guo Jianwei, Shi Haibin, Hua, Zhao Yuyu. A Classification Approach Based on Divergence for Network Traffic in Presence of Concept Drift[J]. Journal of Computer Research and Development, 2020, 57(12): 2673-2682. DOI: 10.7544/issn1000-1239.2020.20190691
    [7]Deng Dayong, Miao Duoqian, Huang Houkuan. Analysis of Concept Drifting and Uncertainty in an Information Table[J]. Journal of Computer Research and Development, 2016, 53(11): 2607-2612. DOI: 10.7544/issn1000-1239.2016.20150803
    [8]Wen Yimin, Tang Shiqi, Feng Chao, Gao Kai. Online Transfer Learning for Mining Recurring Concept in Data Stream Classification[J]. Journal of Computer Research and Development, 2016, 53(8): 1781-1791. DOI: 10.7544/issn1000-1239.2016.20160223
    [9]Deng Dayong, Xu Xiaoyu, Huang Houkuan. Concept Drifting Detection for Categorical Evolving Data Based on Parallel Reducts[J]. Journal of Computer Research and Development, 2015, 52(5): 1071-1079. DOI: 10.7544/issn1000-1239.2015.20140275
    [10]Xin Yi, Guo Gongde, Chen Lifei, Bi Yaxin. IKnnM-DHecoc: A Method for Handling the Problem of Concept Drift[J]. Journal of Computer Research and Development, 2011, 48(4): 592-601.
  • Cited by

    Periodical cited type(6)

    1. 李艳红,李志华,郑建兴,白鹤翔,郭鑫. 有限标签下的非平衡数据流分类方法. 大数据. 2025(02): 107-126 .
    2. 郭虎升,孙妮,王嘉豪,王文剑. 基于自适应深度集成网络的概念漂移收敛方法. 计算机研究与发展. 2024(01): 172-183 . 本站查看
    3. 郭虎升,刘艳杰,王文剑. 基于混合特征提取的流数据概念漂移处理方法. 计算机研究与发展. 2024(06): 1497-1510 . 本站查看
    4. 马乾骏,郭虎升,王文剑. 在线深度神经网络的弱监督概念漂移检测方法. 小型微型计算机系统. 2024(09): 2094-2101 .
    5. 张震,胡贵恒,盖昊宇,任远林. 基于谱聚类算法的高速网络数据流快速分类方法研究. 齐齐哈尔大学学报(自然科学版). 2023(05): 24-30 .
    6. 郭虎升,孙妮. 基于动态边界收缩的概念漂移收敛方法. 山西大学学报(自然科学版). 2023(06): 1293-1306 .

    Other cited types(12)

Catalog

    Article views (366) PDF downloads (186) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return