• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhao Hongke, Wu Likang, Li Zhi, Zhang Xi, Liu Qi, Chen Enhong. Predicting the Dynamics in Internet Finance Based on Deep Neural Network Structure[J]. Journal of Computer Research and Development, 2019, 56(8): 1621-1631. DOI: 10.7544/issn1000-1239.2019.20190330
Citation: Zhao Hongke, Wu Likang, Li Zhi, Zhang Xi, Liu Qi, Chen Enhong. Predicting the Dynamics in Internet Finance Based on Deep Neural Network Structure[J]. Journal of Computer Research and Development, 2019, 56(8): 1621-1631. DOI: 10.7544/issn1000-1239.2019.20190330

Predicting the Dynamics in Internet Finance Based on Deep Neural Network Structure

More Information
  • Published Date: July 31, 2019
  • In recent years, the Internet financial market has achieved rapid development across the globe. In the meantime, Internet finance has become a hot topic in academia. Compared with traditional financial markets, the Internet financial market has higher liquidity and volatility. In this paper, the dynamics (daily trading amount and count) of the Internet financial market is studied and a prediction model is proposed based on deep neural network for fusion hierarchical time series learning. Firstly, the model can process the multiple sequence (macro dynamic sequence and multiple subsequences) feature as the input variables. And then, an attention mechanism is proposed to fuse the input variables from both the time and subsequence feature dimensions. Next, the model designs an optimization function based on the stability constraint of the sequence prediction, which makes the model have better robustness. Finally, a large number of experiments have been carried out on real large-scale data sets, and the results have fully proved the effectiveness and robustness of the proposed model in the dynamic prediction of Internet finance market.
  • Related Articles

    [1]Shang Jing, Wu Zhihui, Xiao Zhiwen, Zhang Yifei. Graph4Cache: A Graph Neural Network Model for Cache Prefetching[J]. Journal of Computer Research and Development, 2024, 61(8): 1945-1956. DOI: 10.7544/issn1000-1239.202440190
    [2]Lu Xiaokai, Feng Jun, Han Yongqiang, Wang Hao, Chen Enhong. GraphMLP-Mixer: A Graph-MLP Architecture for Efficient Multi-Behavior Sequential Recommendation Method[J]. Journal of Computer Research and Development, 2024, 61(8): 1917-1929. DOI: 10.7544/issn1000-1239.202440137
    [3]Liu Linlan, Feng Zhenxing, Shu Jian. Dynamic Network Link Prediction Based on Sequential Graph Convolution[J]. Journal of Computer Research and Development, 2024, 61(2): 518-528. DOI: 10.7544/issn1000-1239.202220776
    [4]Zhu Haiping, Wang Ziyu, Zhao Chengcheng, Chen Yan, Liu Jun, Tian Feng. Learning Resource Recommendation Method Based on Spatio-Temporal Multi-Granularity Interest Modeling[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440249
    [5]Liu Jiexi, Chen Songcan. Non-Stationary Multivariate Time Series Prediction with MIX Gated Unit[J]. Journal of Computer Research and Development, 2019, 56(8): 1642-1651. DOI: 10.7544/issn1000-1239.2019.20190326
    [6]Fang Rongqiang, Wang Jing, Yao Zhicheng, Liu Chang, Zhang Weigong. Modeling Computational Feature of Multi-Layer Neural Network[J]. Journal of Computer Research and Development, 2019, 56(6): 1170-1181. DOI: 10.7544/issn1000-1239.2019.20190111
    [7]Zhang Xiangwen, Lu Ziyao, Yang Jing, Lin Qian, Lu Yu, Wang Hongji, Su Jinsong. Weighted Lattice Based Recurrent Neural Networks for Sentence Semantic Representation Modeling[J]. Journal of Computer Research and Development, 2019, 56(4): 854-865. DOI: 10.7544/issn1000-1239.2019.20170917
    [8]Li Hongshun, Yu Hua, Gong Xiujun. A Deep Learning Model for Predicting RNA-Binding Proteins Only from Primary Sequences[J]. Journal of Computer Research and Development, 2018, 55(1): 93-101. DOI: 10.7544/issn1000-1239.2018.20160508
    [9]Fan Zhengguang, Qu Dan, Yan Honggang, Zhang Wenlin. Joint Acoustic Modeling of Multi-Features Based on Deep Neural Networks[J]. Journal of Computer Research and Development, 2017, 54(5): 1036-1044. DOI: 10.7544/issn1000-1239.2017.20160031
    [10]Wang Xuefei. A Non-Lineal Time-Varying System Simulation Modeling Method Based on Neural Networks[J]. Journal of Computer Research and Development, 2006, 43(7): 1167-1172.
  • Cited by

    Periodical cited type(18)

    1. 孟祥福,石皓源. 基于Transformer模型的时序数据预测方法综述. 计算机科学与探索. 2025(01): 45-64 .
    2. 覃悦,谢开仲,郭晓,王红伟,王秋阳,彭佳旺. 基于互信息和MiniRocket网络的CFST脱空识别. 振动与冲击. 2024(08): 202-212 .
    3. 汤兴恒,郭强,徐天慧,张彩明. 基于多尺度核自适应滤波的股票收益预测. 计算机应用. 2023(05): 1385-1393 .
    4. 梁宏涛,刘硕,杜军威,胡强,于旭. 深度学习应用于时序预测研究综述. 计算机科学与探索. 2023(06): 1285-1300 .
    5. 金宇凯,李志生,欧耀春,张华刚,曾江毅,陈搏超. 基于多阶段聚类的PM_(2.5)质量浓度预测及对比研究. 广东工业大学学报. 2023(03): 17-24 .
    6. 赵洪科,周启璇,尹德虎,张兮,任丽雪,刘春丽. 众筹项目筹资绩效的信息影响机制研究:基于Indiegogo平台证据. 管理工程学报. 2023(06): 145-156 .
    7. 毛伊敏,耿俊豪,陈亮. 结合信息论改进的并行深度森林算法. 计算机工程与应用. 2022(07): 106-115 .
    8. 朱益冬,陈玉明,卢俊文,曾念峰. 融合Logistic回归与Tabnet模型的P2P网贷违约预测方法. 厦门理工学院学报. 2022(03): 38-47 .
    9. 蒋慧敏,陈锋. 融合深度学习和知识图谱的金融时间序列建模与预测. 小型微型计算机系统. 2022(09): 1793-1800 .
    10. 李徵,刘淇,王喆锋,郑毅,林霞,怀宝兴,米兰,陈恩红. 基于地质知识蒸馏学习的油气储集层识别方法. 中国科学:信息科学. 2021(01): 40-55 .
    11. 王基厚,林培光,周佳倩,李庆涛,张燕,蹇木伟. 结合公司财务报表数据的股票指数预测方法. 计算机应用. 2021(12): 3632-3636 .
    12. 李经纬,朱冬冬. 我国宏观经济指数的构建与预测——基于灰色系统理论. 时代金融. 2020(06): 5-6 .
    13. 陆明,周菁,张平. 基于灰色神经网络模型的动车组检修测量设备量值状态预测研究. 铁道技术监督. 2020(02): 10-13 .
    14. 闫梦,王聪. 基于多尺度集成模型预测碳交易价格——以广州碳排放交易中心为例. 技术经济与管理研究. 2020(05): 19-24 .
    15. 吴艳丽,武创举,阴钰娇. 证据理论和神经网络的互联网教学质量评估模型. 现代电子技术. 2020(19): 175-178 .
    16. 李桂芝,王雪标. 大数据背景下基于GRBF神经网络的P2P机构信用风险预警研究. 数学的实践与认识. 2020(17): 35-43 .
    17. 林天华,张倩倩,祁旭阳,赵霞. 证券大数据分析研究. 计算机技术与发展. 2020(10): 179-186 .
    18. 张倩倩,林天华,祁旭阳,赵霞. 基于机器学习的股票预测研究综述. 河北省科学院学报. 2020(04): 15-21 .

    Other cited types(36)

Catalog

    Article views (1599) PDF downloads (913) Cited by(54)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return