• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Huan, Zheng Qinghua, Luo Minnan, Zhao Hongke, Xiao Yang, Lü Yanzhang. Cross-Domain Adversarial Learning for Zero-Shot Classification[J]. Journal of Computer Research and Development, 2019, 56(12): 2521-2535. DOI: 10.7544/issn1000-1239.2019.20190614
Citation: Liu Huan, Zheng Qinghua, Luo Minnan, Zhao Hongke, Xiao Yang, Lü Yanzhang. Cross-Domain Adversarial Learning for Zero-Shot Classification[J]. Journal of Computer Research and Development, 2019, 56(12): 2521-2535. DOI: 10.7544/issn1000-1239.2019.20190614

Cross-Domain Adversarial Learning for Zero-Shot Classification

More Information
  • Published Date: November 30, 2019
  • Zero-shot learning (ZSL) aims to recognize novel categories, which have few or even no sample for training and follow a different distribution from seen classes. With the recent advances of deep neural networks on cross-modal generation, encouraging breakthroughs have been achieved on classifying unseen categories with their synthetic samples. Extant methods synthesize unseen samples with the combination of generative adversarial nets (GANs) and variational auto-encoder (VAE) by sharing the generator and the decoder. However, due to the different data distributions produced by these two kinds of generative models, fake samples synthesized by the joint model follow the complex multi-domain distribution instead of satisfying a single model distribution. To address this issue, in this paper we propose a cross-domain adversarial generative network (CrossD-AGN) to integrate the traditional GANs and VAE into a unified framework, which is able to generate unseen samples based on the class-level semantics for zero-shot classification. We propose two symmetric cross-domain discriminators along with the cross-domain adversarial learning mechanism to learn to determine whether a synthetic sample is from the generator-domain or the decoder-domain distribution, so as to drive the generator/decoder of the joint model to improve its capacity of synthesizing fake samples. Extensive experimental results over several real-world datasets demonstrate the effectiveness and superiority of the proposed model on zero-shot visual classification.
  • Cited by

    Periodical cited type(5)

    1. 周军芽,吴进伟,吴广飞,张何为. 基于Bi-LSTM神经网络的短文本敏感词识别方法. 武汉理工大学学报(信息与管理工程版). 2024(02): 312-316 .
    2. 石新满,胡广林,邵鑫,赵新爽,张思慧,乔晓. 基于人工智能大语言模型技术的电网优化运行应用分析. 自动化与仪器仪表. 2024(08): 180-184 .
    3. 李卓卓,蒋雨萌. 信息隐私量表对象、指标和应用的研究与展望. 情报理论与实践. 2024(10): 41-52 .
    4. 谭九生,李猛. 人机融合智能的伦理风险及其适应性治理. 昆明理工大学学报(社会科学版). 2022(03): 37-45 .
    5. 潘旭东,张谧,杨珉. 基于神经元激活模式控制的深度学习训练数据泄露诱导. 计算机研究与发展. 2022(10): 2323-2337 . 本站查看

    Other cited types(7)

Catalog

    Article views (1428) PDF downloads (671) Cited by(12)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return