• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209
Citation: Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209

Survey on Deep Learning Based Natural Language Interface to Database

Funds: This work was supported by the Key Program of the National Natural Science Foundation of China (U1936206), the National Natural Science Foundation of China (U1836109, U1903128), the General Program of the National Natural Science Foundation of China (61772289, 62077031), the National Natural Science Foundation of China for Young Scientists (62002178), and the Natural Science Foundation of Tianjin (20JCQNJC01730).
More Information
  • Published Date: August 31, 2021
  • NLIDB (natural language interface to database) provides a new form to access databases with barrier-free text query, which reduces the burdens for users to learn the SQL (structured query language). Because of its great application value, NLIDB has attracted much attention in the field of scientific research and commercial in recent years. Most of the current mature NLIDB systems are based on classical natural language processing technologies, which depend on rule-based approaches to realize the transformation from natural language questions to SQL. But these approaches have poor ability to generalize. Deep learning models have advantages on distributed and high-level representation learning, which are competent for semantic feature mining in natural language. Therefore, the application of deep learning technology in NLIDB has gradually become a hot research topic nowadays. This paper provides a systematic review of the NLIDB researches based on deep learning in recent years. The main contributions are as follows: firstly, according to the decoding method, we sort out existing deep learning-based NLIDB models into 4 categories, and state the advantage and the weakness respectively; secondly, we summarize 7 common assist techniques in the implementations of the NLIDB models; thirdly, we propose the problems remaining to be solved and put forward the relevant directions for future researches.
  • Cited by

    Periodical cited type(13)

    1. 周康,阳爱民,周栋,林楠铠. 基于稀疏连接和多通道LSTM的NL2SQL研究. 信息技术. 2024(08): 169-173+180 .
    2. 富庭轩,陈启明,杨怀宇. 一种新型的数据库自然语言查询实现方案. 现代信息科技. 2024(15): 51-54+59 .
    3. 李伟强,王震,张正毅. AIGC时代下物流客服产业优化与探索. 中国新技术新产品. 2024(18): 133-136 .
    4. 何佳壕,刘喜平,舒晴,万常选,刘德喜,廖国琼. 带复杂计算的金融领域自然语言查询的SQL生成. 浙江大学学报(工学版). 2023(02): 277-286 .
    5. 赵志超,游进国,何培蕾,李晓武. 数据库中文查询对偶学习式生成SQL语句研究. 中文信息学报. 2023(03): 164-172 .
    6. 王燕凤. 数据库查询系统中自然语言理解技术应用. 科技创新与应用. 2023(18): 23-26 .
    7. 殷来祥,李志强,付琼莹. 基于NL2SQL的兵棋数据智能统计分析方法研究. 系统仿真学报. 2023(09): 2000-2010 .
    8. 梁清源,朱琪豪,孙泽宇,张路,张文杰,熊英飞,梁广泰,郁莲. 基于深度学习的SQL生成研究综述. 中国科学:信息科学. 2022(08): 1363-1392 .
    9. 熊军,张冲,王代印,宋连双,陈峰. 三区三线管控下GIS划定永久基本农田研究. 城市建筑. 2022(22): 41-45 .
    10. 冯丽露,康耀龙,高晓晶,王涛. 基于SSM框架的数据结构在线评测系统设计与实现. 中国信息技术教育. 2021(13): 86-89 .
    11. 何文红. 基于深度学习背景下的高中数学教学研究. 高考. 2021(22): 51-52 .
    12. 千月欣,王永忠,李佳骏,徐天羿. 基于深度学习的机场能见度预测研究. 云南民族大学学报(自然科学版). 2021(06): 615-620 .
    13. 王胜杰,李焕云. 基于灰色GM模型的数据压缩处理方法. 电脑知识与技术. 2021(36): 151-152+159 .

    Other cited types(11)

Catalog

    Article views (1109) PDF downloads (506) Cited by(24)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return