• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209
Citation: Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209

Survey on Deep Learning Based Natural Language Interface to Database

Funds: This work was supported by the Key Program of the National Natural Science Foundation of China (U1936206), the National Natural Science Foundation of China (U1836109, U1903128), the General Program of the National Natural Science Foundation of China (61772289, 62077031), the National Natural Science Foundation of China for Young Scientists (62002178), and the Natural Science Foundation of Tianjin (20JCQNJC01730).
More Information
  • Published Date: August 31, 2021
  • NLIDB (natural language interface to database) provides a new form to access databases with barrier-free text query, which reduces the burdens for users to learn the SQL (structured query language). Because of its great application value, NLIDB has attracted much attention in the field of scientific research and commercial in recent years. Most of the current mature NLIDB systems are based on classical natural language processing technologies, which depend on rule-based approaches to realize the transformation from natural language questions to SQL. But these approaches have poor ability to generalize. Deep learning models have advantages on distributed and high-level representation learning, which are competent for semantic feature mining in natural language. Therefore, the application of deep learning technology in NLIDB has gradually become a hot research topic nowadays. This paper provides a systematic review of the NLIDB researches based on deep learning in recent years. The main contributions are as follows: firstly, according to the decoding method, we sort out existing deep learning-based NLIDB models into 4 categories, and state the advantage and the weakness respectively; secondly, we summarize 7 common assist techniques in the implementations of the NLIDB models; thirdly, we propose the problems remaining to be solved and put forward the relevant directions for future researches.
  • Related Articles

    [1]Deng Xinguo, Zhang Xinhong, Chen Jiarui, Liu Qinghai, Chen Chuandong. A Weighted Directed Graph-Based Algorithm for Group Routing in Printed Circuit Boards[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440069
    [2]Wang Houzhen, Qin Wanying, Liu Qin, Yu Chunwu, Shen Zhidong. Identity Based Group Key Distribution Scheme[J]. Journal of Computer Research and Development, 2023, 60(10): 2203-2217. DOI: 10.7544/issn1000-1239.202330457
    [3]Zhang Qikun, Gan Yong, Wang Ruifang, Zheng Jiamin, Tan Yu’an. Inter-Cluster Asymmetric Group Key Agreement[J]. Journal of Computer Research and Development, 2018, 55(12): 2651-2663. DOI: 10.7544/issn1000-1239.2018.20170651
    [4]Wang Haiyan, Xiao Yikang. Dynamic Group Discovery Based on Density Peaks Clustering[J]. Journal of Computer Research and Development, 2018, 55(2): 391-399. DOI: 10.7544/issn1000-1239.2018.20160928
    [5]Wang Haiyan, Dong Maowei. Latent Group Recommendation Based on Dynamic Probabilistic Matrix Factorization Model Integrated with CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1853-1863. DOI: 10.7544/issn1000-1239.2017.20170344
    [6]Li Xuefeng, Zhang Junwei, Ma Jianfeng, Liu Hai. TSNP: A Novel PCLSecure and Efficient Group Authentication Protocol in Space Information Network[J]. Journal of Computer Research and Development, 2016, 53(10): 2376-2392. DOI: 10.7544/issn1000-1239.2016.20160453
    [7]Meng Fei, Lan Julong, Hu Yuxiang. A Cooperative Game Based Data Center Backbone Network Bandwidth Allocation Policy[J]. Journal of Computer Research and Development, 2016, 53(6): 1306-1313. DOI: 10.7544/issn1000-1239.2016.20148400
    [8]Zhang Qikun, Wang Ruifang, Tan Yu'an. Identity-Based Authenticated Asymmetric Group Key Agreement[J]. Journal of Computer Research and Development, 2014, 51(8): 1727-1738. DOI: 10.7544/issn1000-1239.2014.20121165
    [9]Wang Feng, Zhou Yousheng, Gu Lize, Yang Yixian. A Multi-Policies Threshold Signature Scheme with Group Verifiability[J]. Journal of Computer Research and Development, 2012, 49(3): 499-505.
    [10]Li Shaofang, Hu Shanli, Shi Chunyi. An Anytime Coalition Structure Generation Based on the Grouping Idea of Cardinality Structure[J]. Journal of Computer Research and Development, 2011, 48(11): 2047-2054.
  • Cited by

    Periodical cited type(3)

    1. 潘佳,于秀兰. 基于社交意识和支付激励的D2D协作传输策略. 计算机应用研究. 2023(06): 1801-1805 .
    2. 刘琳岚,谭镇阳,舒坚. 基于图神经网络的机会网络节点重要度评估方法. 计算机研究与发展. 2022(04): 834-851 . 本站查看
    3. 王淳,吴仕荣. 舰船自组织网络数据分发机制研究. 舰船科学技术. 2020(14): 166-168 .

    Other cited types(2)

Catalog

    Article views (1088) PDF downloads (504) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return