• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Luo Hao, Yan Guanghui, Zhang Meng, Bao Junbo, Li Juncheng, Liu Ting, Yang Bo, Wei Jun. Research on Node Importance Fused Multi-Information for Multi-Relational Social Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 954-970. DOI: 10.7544/issn1000-1239.2020.20190331
Citation: Luo Hao, Yan Guanghui, Zhang Meng, Bao Junbo, Li Juncheng, Liu Ting, Yang Bo, Wei Jun. Research on Node Importance Fused Multi-Information for Multi-Relational Social Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 954-970. DOI: 10.7544/issn1000-1239.2020.20190331

Research on Node Importance Fused Multi-Information for Multi-Relational Social Networks

Funds: This work was supported by the National Natural Science Foundation of China (61662066, 61163010) and the Technique Foundation Program for Young Scientists of Gansu Province (1606RJYA222).
More Information
  • Published Date: April 30, 2020
  • Identifying critical nodes is one of the principal tasks of social network analysis, and it is essential to understand the structure and dynamic characteristics of the complex networks. However, the analysis framework of node importance mainly focuses on single-relational networks. As a typical model of the real world, the multi-relational network has become one of the hot topics in the field of network science, in which the research on node importance lacks systematic research. Focusing on the study of node importance in multi-relational social networks, we create the directed multiplex network model to describe a multi-relational network and use the representation framework based on tensor algebra to analyze it. Meanwhile, we propose a measure of node importance considered the influence of centrality, prestige, transitivity in multi-relational social networks. Considering the influence of coupling information and the difference of transmission mechanism for node importance on multi-relational networks, in this work we improve the method and propose another more efficient method called IOMEC to evaluate the node importance. Experimental results on four real networks show that the method of information fusion can effectively eliminate the influence on node importance evaluation, which is caused by the coupling information and the transmission mechanism of the multi-relational network. The IOMEC method can measure the importance of nodes more accurately and has lower time complexity. The experimental results demonstrate that centrality and prestige are the main factors to evaluate the node importance and the necessity of considering the transitivity of nodes. In this work we not only provide new ideas and methods for evaluating node importance for multi-relational networks but also expand the application of information fusion technology.
  • Cited by

    Periodical cited type(19)

    1. 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法. 山东大学学报(理学版). 2024(05): 35-44 .
    2. 刘帆,王凤美. 多模态内容安全审核系统构建思考. 中国传媒科技. 2023(04): 149-153 .
    3. 季长清,王兵兵,秦静,汪祖民. 深度特征的实例图像检索算法综述. 计算机科学与探索. 2023(07): 1565-1575 .
    4. 周成龙,陈玉明,朱益冬. 粒K均值聚类算法. 计算机工程与应用. 2023(13): 317-324 .
    5. 张家钧,唐云祁,杨智雄,耿鹏志. 基于注意力机制的鞋型识别算法. 激光与光电子学进展. 2022(02): 365-373 .
    6. 于伟,邱彩华. 一种基于深度学习的异质域检索方法. 安徽大学学报(自然科学版). 2022(04): 30-37 .
    7. 杨得国,马兰萍,聂毓. 基于PCANet和SVM的病变眼底图像检测算法. 江西师范大学学报(自然科学版). 2022(04): 372-378 .
    8. 关海鹏,任燕,赵秋霞. 集成局部和全局特征的舰船图像检索算法. 舰船科学技术. 2021(02): 100-102 .
    9. 魏明珠,郑荣,杨竞雄. 基于深度学习的图像检索研究进展. 情报科学. 2021(05): 184-192 .
    10. 毛亚青,王亮,胡俊峰. 基于加权深度特征的医学图像并行检索仿真. 计算机仿真. 2021(11): 438-444 .
    11. 余鹰,朱慧琳,钱进,潘诚,苗夺谦. 基于深度学习的人群计数研究综述. 计算机研究与发展. 2021(12): 2724-2747 . 本站查看
    12. 谭翔纬. 基于支持向量机和用户反馈的图像检索算法. 吉林大学学报(理学版). 2020(04): 899-905 .
    13. 张超,林正春,姜允志,贾西平,王静. 用于图像检索的多区域深度特征加权聚合算法. 软件导刊. 2020(10): 133-137 .
    14. 梁观术,曹江中,戴青云,黄云飞. 一种基于注意力机制的无监督商标检索方法. 广东工业大学学报. 2020(06): 41-49 .
    15. 李英成,钱赛男,朱祥娥,刘晓龙,李晶晶. 卷积神经网络在大规模图像分类中的应用. 测绘科学. 2019(06): 121-125 .
    16. 邵福波,黄静. 图像检索研究综述. 山东化工. 2019(15): 81-82 .
    17. 石文浩,孟军,张朋,刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型. 计算机研究与发展. 2019(08): 1652-1660 . 本站查看
    18. 欧焱,冯煜晶,李文明,叶笑春,王达,范东睿. 面向数据流结构的指令内访存冲突优化研究. 计算机研究与发展. 2019(12): 2720-2732 . 本站查看
    19. 陈思聪. 基于兴趣点局部分布特征的图像检索研究. 微型电脑应用. 2019(12): 114-116+154 .

    Other cited types(33)

Catalog

    Article views (1182) PDF downloads (730) Cited by(52)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return