• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Huiyong, Tang Shijie, Ding Yong, Wang Yujue, Li Jiahui. Survey on Biometrics Template Protection[J]. Journal of Computer Research and Development, 2020, 57(5): 1003-1021. DOI: 10.7544/issn1000-1239.2020.20190371
Citation: Wang Huiyong, Tang Shijie, Ding Yong, Wang Yujue, Li Jiahui. Survey on Biometrics Template Protection[J]. Journal of Computer Research and Development, 2020, 57(5): 1003-1021. DOI: 10.7544/issn1000-1239.2020.20190371

Survey on Biometrics Template Protection

Funds: This work was supported by the National Natural Science Foundation of China (61772150, 61862012, 61802083, 61962012), the Natural Science Foundation of Guangxi Autonomous Region of China (2018GXNSFDA281054, 2018GXNSFAA281232), the Guangxi Key Research and Development Program (AB17195025), and the Open Project of Guangxi Key Laboratory of Cryptography and Information Security (GCIS201622, GCIS201702).
More Information
  • Published Date: April 30, 2020
  • Biometric authentication (BA) has become an important means of identity authentication. However, many BA systems deployed at present do not take enough consideration in protecting the security and privacy of users biometric data, which has become a main obstacle to the popularization and application of the BA technology. BA systems may face various attacks from software or hardware implementations, among which, template attack is the main consideration. Many technical literatures have been devoted to dealing with this type of attacks. However, existing review literatures suffer from incomplete descriptions or conflicting discussions. In order to systematically summarize the attacking and protection technologies against biometric templates, some related concepts of the BA system is introduced at first, as well as the architecture of a BA system and the connotation of BA security and privacy. Then, template protection technologies for a BA system are classified into two main categories for description: the transformation-based methods and the crypto-based methods, which solves some conflictions in existing literatures. Afterwards, some classical methods and emerging technologies in each category are expounded and analyzed, as well as some subsequent evaluations and improvements. Finally, several major difficulties and the corresponding possible solutions for building a secure BA system are pointed out.
  • Related Articles

    [1]Xue Zhihang, Xu Zheming, Lang Congyan, Feng Songhe, Wang Tao, Li Yidong. Text-to-Image Generation Method Based on Image-Text Semantic Consistency[J]. Journal of Computer Research and Development, 2023, 60(9): 2180-2190. DOI: 10.7544/issn1000-1239.202220416
    [2]Zhang Dongjie, Huang Longtao, Zhang Rong, Xue Hui, Lin Junyu, Lu Yao. Fake Review Detection Based on Joint Topic and Sentiment Pre-Training Model[J]. Journal of Computer Research and Development, 2021, 58(7): 1385-1394. DOI: 10.7544/issn1000-1239.2021.20200817
    [3]Wang Zhiqiang, Liang Jiye, Li Ru. Probability Matrix Factorization for Link Prediction Based on Information Fusion[J]. Journal of Computer Research and Development, 2019, 56(2): 306-318. DOI: 10.7544/issn1000-1239.2019.20170746
    [4]Yu Yonghong, Gao Yang, Wang Hao. A Ranking Based Poisson Matrix Factorization Model for Point-of-Interest Recommendation[J]. Journal of Computer Research and Development, 2016, 53(8): 1651-1663. DOI: 10.7544/issn1000-1239.2016.20160202
    [5]Yu Wenzhe, Sha Chaofeng, He Xiaofeng, Zhang Rong. Review Selection Considering Opinion Diversity[J]. Journal of Computer Research and Development, 2015, 52(5): 1050-1060. DOI: 10.7544/issn1000-1239.2015.20131932
    [6]Ren Yafeng, Ji Donghong, Zhang Hongbin, Yin Lan. Deceptive Reviews Detection Based on Positive and Unlabeled Learning[J]. Journal of Computer Research and Development, 2015, 52(3): 639-648. DOI: 10.7544/issn1000-1239.2015.20131473
    [7]Zhu Yan, Jing Liping, and Yu Jian. An Active Labeling Method for Text Data Based on Nearest Neighbor and Information Entropy[J]. Journal of Computer Research and Development, 2012, 49(6): 1306-1312.
    [8]Shang Wenqian, Huang Houkuan, Liu Yuling, Lin Yongmin, Qu Youli, and Dong Hongbin. Research on the Algorithm of Feature Selection Based on Gini Index for Text Categorization[J]. Journal of Computer Research and Development, 2006, 43(10): 1688-1694.
    [9]Wang Zhiming, Tao Jianhua. A Review of Text-to-Visual Speech Synthesis[J]. Journal of Computer Research and Development, 2006, 43(1): 145-152.
    [10]Liu Tao, Wu Gongyi, Chen Zheng. An Effective Unsupervised Feature Selection Method for Text Clustering[J]. Journal of Computer Research and Development, 2005, 42(3).
  • Cited by

    Periodical cited type(14)

    1. 胡磊,甘胜丰. 基于YOLO-CIRCLE算法的圆形钢卷检测. 湖北第二师范学院学报. 2023(02): 18-25 .
    2. 张晓辉,何金海,兰鹏燕,徐圣斯. 局部几何与全局结构联合感知的三维形状分类方法. 计算机应用研究. 2023(12): 3828-3833 .
    3. 张晓媛,于洋,王新蕊. 三维图像虚拟视点生成优化研究仿真. 计算机仿真. 2022(03): 205-209 .
    4. 张艳丽,牛任恺,张鑫磊,孙志杰,王利赛. 基于序列标注的业务异常工单判别方法研究. 电子设计工程. 2022(07): 139-143 .
    5. 吴康楠,姜洪庆. 面向绿色化改造的历史民居建筑三维重构方法. 工业加热. 2022(05): 27-30+40 .
    6. 连远锋,裴守爽,胡伟. 融合NFFD与图卷积的单视图三维物体重建. 光学精密工程. 2022(10): 1189-1202 .
    7. 李远松,丁津津,徐晨,高博,汤汉松,单荣荣. 基于智能感知与深度学习的智能变电站设备状态检测方法. 电气工程学报. 2022(02): 208-214 .
    8. 郭艺辉,陆寄远,黄承慧,钟雪灵,林淑金,苏卓,罗笑南. 基于混合频谱信号编码的网格纹理平滑. 计算机学报. 2021(02): 318-333 .
    9. 谢昊洋,钟跃崎. 基于图卷积网络的非参数化三维人体重建. 毛纺科技. 2021(04): 18-24 .
    10. 李海生,武玉娟,郑艳萍,吴晓群,蔡强,杜军平. 基于深度学习的三维数据分析理解方法研究综述. 计算机学报. 2020(01): 41-63 .
    11. 曲海成,田小容,刘腊梅,石翠萍. 多尺度显著区域检测图像压缩. 中国图象图形学报. 2020(01): 31-42 .
    12. 杨晓文,尹洪红,韩燮,刘佳鸣. 基于蚁狮优化的极限学习机的网格分割方法. 激光与光电子学进展. 2020(04): 163-169 .
    13. 崔金栋,陈思远. 融媒体信息推荐模型构建与信息推荐方法研究. 情报科学. 2020(07): 52-58 .
    14. 周燕,曾凡智,吴臣,罗粤,刘紫琴. 基于深度学习的三维形状特征提取方法. 计算机科学. 2019(09): 47-58 .

    Other cited types(20)

Catalog

    Article views (1630) PDF downloads (746) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return