• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Xudong, Zhang Jianming, Xie Zhipeng, Wang Jin. A Fast Traffic Sign Detection Algorithm Based on Three-Scale Nested Residual Structures[J]. Journal of Computer Research and Development, 2020, 57(5): 1022-1036. DOI: 10.7544/issn1000-1239.2020.20190445
Citation: Li Xudong, Zhang Jianming, Xie Zhipeng, Wang Jin. A Fast Traffic Sign Detection Algorithm Based on Three-Scale Nested Residual Structures[J]. Journal of Computer Research and Development, 2020, 57(5): 1022-1036. DOI: 10.7544/issn1000-1239.2020.20190445

A Fast Traffic Sign Detection Algorithm Based on Three-Scale Nested Residual Structures

Funds: This work was supported by the National Natural Science Foundation of China (61972056, 61811530332), the Natural Science Foundation of Hunan Province of China (2019JJ50666), the “Double First-class” International Cooperation and Development Scientific Research Project of Changsha University of Science and Technology (2019IC34), the Postgraduate Training Innovation Base Construction Project of Hunan Province (2019-248-51), and the Postgraduate Scientific Research Innovation Fund of Hunan Province (CX20190695).
More Information
  • Published Date: April 30, 2020
  • Automatic driving technology has high requirements for real-time and robustness of traffic sign detection in real world. The YOLOv3-tiny model is a lightweight network with good real-time performance in the object detection, but its accuracy is not high. In this paper, we use YOLOv3-tiny as the basic network and propose a fast traffic sign detection algorithm with three-scale nested residual structure. Firstly, shortcut based on pixel by pixel addition is employed in the YOLOv3-tiny network. It does not increase the number of feature map channels, and a small residual structure is formed in the network at the same time. Secondly, the predictive output with higher spatial resolution is also added through the shortcut, which contains more abundant spatial information, thus forming a large residual structure. Finally, the two residual structures are nested to form a three-scale predictive nested residual network, which makes the main network of Tiny located in these two residual structures and the parameters can be adjusted three times. The results show that the proposed algorithm can quickly and robustly detect traffic signs in real scenes. The F\-1 value of total traffic signs achieves 91.77% on German traffic sign detection benchmark and the detection time is 5ms. On CSUST Chinese traffic sign detection benchmark, F\-1 values of the Mandatory, the Prohibitory and the Warning are 92.41%, 93.91% and 92.03% respectively, and the detection time is 5ms.
  • Related Articles

    [1]Qiu Jiefan, Xu Yifan, Xu Ruiji, Zhou Dongli, Chi Kaikai. An Optimization Method of Human Vital Signs Detection During the Non-Steady States[J]. Journal of Computer Research and Development, 2024, 61(2): 481-493. DOI: 10.7544/issn1000-1239.202220774
    [2]Ye Jing, Zou Bowei, Hong Yu, Shen Longxiang, Zhu Qiaoming, Zhou Guodong. Negation and Speculation Scope Detection in Chinese[J]. Journal of Computer Research and Development, 2019, 56(7): 1506-1516. DOI: 10.7544/issn1000-1239.2019.20180725
    [3]Huang Jipeng, Shi Yinghuan, Gao Yang. Multi-Scale Faster-RCNN Algorithm for Small Object Detection[J]. Journal of Computer Research and Development, 2019, 56(2): 319-327. DOI: 10.7544/issn1000-1239.2019.20170749
    [4]Zhang Hu, Tan Hongye, Qian Yuhua, Li Ru, Chen Qian. Chinese Text Deception Detection Based on Ensemble Learning[J]. Journal of Computer Research and Development, 2015, 52(5): 1005-1013. DOI: 10.7544/issn1000-1239.2015.20131552
    [5]Lan Mengwei, Li Cuiping, Wang Shaoqing, Zhao Kankan, Lin Zhixia, Zou Benyou, Chen Hong. Survey of Sign Prediction Algorithms in Signed Social Networks[J]. Journal of Computer Research and Development, 2015, 52(2): 410-422. DOI: 10.7544/issn1000-1239.2015.20140210
    [6]Gu Mingqin, Cai Zixing. Traffic Sign Recognition Based on Parameter-free Detector and DT-CWT[J]. Journal of Computer Research and Development, 2013, 50(9): 1893-1901.
    [7]Zheng Liming, Zou Peng, Han Weihong, Li Aiping, Jia Yan. Traffic Anomaly Detection Using Multi-Dimensional Entropy Classification in Backbone Network[J]. Journal of Computer Research and Development, 2012, 49(9): 1972-1981.
    [8]Zheng Liming, Zou Peng, Jia Yan. Anomaly Detection Using Multi-Level and Multi-Dimensional Analyzing of Network Traffic[J]. Journal of Computer Research and Development, 2011, 48(8): 1506-1516.
    [9]Zhang Yuhe, Huang Xi, Cui Li. WSN Nodes for Real-Time Traffic Information Detection[J]. Journal of Computer Research and Development, 2008, 45(1): 110-118.
    [10]Zhang Liangguo, Gao Wen, Chen Xilin, Chen Yiqiang, Wang Chunli. A Medium Vocabulary Visual Recognition System for Chinese Sign Language[J]. Journal of Computer Research and Development, 2006, 43(3): 476-482.

Catalog

    Article views (1350) PDF downloads (620) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return