• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Guorui, Meng Jie, Peng Sancheng, Wang Cong. A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks[J]. Journal of Computer Research and Development, 2020, 57(6): 1284-1291. DOI: 10.7544/issn1000-1239.2020.20190587
Citation: Li Guorui, Meng Jie, Peng Sancheng, Wang Cong. A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks[J]. Journal of Computer Research and Development, 2020, 57(6): 1284-1291. DOI: 10.7544/issn1000-1239.2020.20190587

A Distributed Data Reconstruction Algorithm Based on Jacobi ADMM for Compressed Sensing in Sensor Networks

Funds: This work was supported by the National Natural Science Foundation of China (61876205), the Fundamental Research Funds for the Central Universities (N172304022), the Science and Technology Plan Project of Guangzhou (201804010433), and the Bidding Project of Laboratory of Language Engineering and Computing (LEC2017ZBKT001).
More Information
  • Published Date: May 31, 2020
  • Considering the application scenario of decentralized data collection in wireless sensor networks (WSNs), a distributed data reconstruction algorithm based on Jacobi ADMM (alternating direction method of multipliers) for compressed sensing is proposed by adopting the JSM-1 (joint sparse model-1) model in the distributed compressed sensing (DCS) theory. Through exchanging the common information among cluster heads to determine the common components in the correlated sensed data and update the innovation components in each cluster head, the compressed sensed data in WSNs are reconstructed in a distributed way. The data collection operation in wireless sensor networks is firstly abstracted as a distributed optimization problem. In order to avoid non-convergence in the distributed data reconstruction process, a proximal component is then introduced into the aforementioned optimization problem with the goal of converting the sub-problem of the optimization objective function into its strictly convex form. After that, the ADMM method is utilized to solve the data reconstruction problem. Both the synthetic dataset and the real world datasets are used in the experiments to verify the performance of the proposed algorithm. Experimental results show that the proposed data reconstruction algorithm can provide higher data reconstruction accuracy than the state of the art data reconstruction algorithms.
  • Related Articles

    [1]Cai Di, Hong Xuehai, Xiao Junmin, Tan Guangming. Parallel Optimization for Large-Scale Ocean Data Assimilation[J]. Journal of Computer Research and Development, 2023, 60(5): 1177-1190. DOI: 10.7544/issn1000-1239.202111185
    [2]He Jianhao, Li Lüzhou. An Overview of Quantum Optimization[J]. Journal of Computer Research and Development, 2021, 58(9): 1823-1834. DOI: 10.7544/issn1000-1239.2021.20210276
    [3]Li Zhetao, Zang Lang, Tian Shujuan, Li Renfa. Data Collection Method in Clustering Network Based on Hybrid Compressive Sensing[J]. Journal of Computer Research and Development, 2017, 54(3): 493-501. DOI: 10.7544/issn1000-1239.2017.20150885
    [4]Wang Youwei, Wang Weiping, Meng Dan. Query Optimization by Statistical Approach for Hive Data Warehouse[J]. Journal of Computer Research and Development, 2015, 52(6): 1452-1462. DOI: 10.7544/issn1000-1239.2015.20140403
    [5]Zhao Yulei, Guo Baolong, Wu Xianxiang, Wang Pai. Image Reconstruction Algorithm for ECT Based on Dual Particle Swarm Collaborative Optimization[J]. Journal of Computer Research and Development, 2014, 51(9): 2094-2100. DOI: 10.7544/issn1000-1239.2014.20131006
    [6]Dong Pingping, Wang Lezhi, Sun Jun, and Wang Jianxin. Data and Protocol Optimization Techniques in Wide Area Networks[J]. Journal of Computer Research and Development, 2014, 51(5): 944-958.
    [7]Zhong Ming, Wang Sheng, and Liu Mengchi. An Optimization Approach of Known-Item Search on Large-Scale Graph Data[J]. Journal of Computer Research and Development, 2014, 51(1): 54-63.
    [8]Zhou Siwang, Lin Yaping, Ye Songtao, Hu Yupeng. A Wavelet Data Compression Algorithm with Memory-Efficiency for Wireless Sensor Network[J]. Journal of Computer Research and Development, 2009, 46(12): 2085-2092.
    [9]Zhou Bin, Wu Xinchun, and Ye Yizheng. Optimization of Two Dimensional Test Data Compression[J]. Journal of Computer Research and Development, 2009, 46(4): 637-643.
    [10]Cui Zhendong, Wang Xicheng. Optimization Design of Turbine Engine Foundation on Grid[J]. Journal of Computer Research and Development, 2007, 44(10): 1652-1660.
  • Cited by

    Periodical cited type(9)

    1. 许学添,郑禹. 基于两步迭代收缩法的多稀疏空间图像快速重构方法. 电子器件. 2024(01): 145-150 .
    2. 徐寅森,李红艳,张子栋. 基于机器学习的传感网核心节点漏洞检测仿真. 计算机仿真. 2024(03): 410-414 .
    3. 曾梦妤. 基于压缩感知的中频感应加热设备边缘用电数据缺失重构方法. 工业加热. 2024(06): 75-79 .
    4. 潘建宏,王磊,张俊茹,樊家树,董爱迪. 能源大数据中心数据脱敏关键技术研究. 自动化技术与应用. 2023(06): 94-97 .
    5. 李媛. 基于边缘计算的在线学习资源压缩存储方法研究. 宁夏师范学院学报. 2022(01): 76-83 .
    6. 田英. 基于多元统计的传感网络不完整数据筛选方法. 电子设计工程. 2022(16): 160-163+168 .
    7. 毛明扬. 考虑局部邻域多流形度量的单训练样本人脸识别. 计算机与数字工程. 2022(07): 1562-1565+1572 .
    8. 肖峰. 基于LZW算法的高负荷光栅传感网络数据分块无损压缩方法. 西昌学院学报(自然科学版). 2021(03): 66-69+82 .
    9. 梁艳,安健,胡先智,杨倩,司海峰. 群智感知中支持隐私保护的激励机制研究. 计算机学报. 2020(12): 2414-2432 .

    Other cited types(2)

Catalog

    Article views (1001) PDF downloads (331) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return