• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Yutong, Wu Bin, Bai Ting. The Construction and Analysis of Classical Chinese Poetry Knowledge Graph[J]. Journal of Computer Research and Development, 2020, 57(6): 1252-1268. DOI: 10.7544/issn1000-1239.2020.20190641
Citation: Liu Yutong, Wu Bin, Bai Ting. The Construction and Analysis of Classical Chinese Poetry Knowledge Graph[J]. Journal of Computer Research and Development, 2020, 57(6): 1252-1268. DOI: 10.7544/issn1000-1239.2020.20190641

The Construction and Analysis of Classical Chinese Poetry Knowledge Graph

Funds: This work was supported by the National Key Research and Development Program of China (2018YFC0831500) and the National Natural Science Foundation of China (U1936220, 61972047).
More Information
  • Published Date: May 31, 2020
  • Classical Chinese poetry is a precious cultural heritage. It is significant to use the rich information in classical Chinese poetry to further investigate the language, literature and historical development of Chinese culture. However, the knowledge of classical Chinese poetry is highly fragmented. It not only exists in poetry itself, but also is widely distributed in the materials which are used to explain poetry, such as annotations, translations, appreciations, etc. Our aim is to obtain the potential semantic relationship between words and expressions, and use knowledge graph to link them. By doing this, we could integrate fragmented knowledge in a systematic way, which enables us to achieve better reasoning and analysis of classical Chinese poetry knowledge. In this paper, we propose a method to construct classical Chinese poetry knowledge graph (CCP-KG). About building nodes of CCP-KG, we use the improved Apriori algorithm to generate candidate words, then check if the candidate word appears in the annotations to determine when it can be a node of CCP-KG. About building edges of CCP-KG, the semantic relationship between words is established through the annotations, then we use the artificially constructed classical Chinese poetry hierarchical structure to establish the relationship between abstract semantics. Finally, we obtain CCP-KG, which covers every aspect of classical Chinese poetry and contains multi-layer semantic links between words. Taking Tang poetry as an example, CCP-KG can be used to analysis classical Chinese poems in different dimensions. Compared with character-based data analysis, the use of CCP-KG assists literary research more in-depth from the perspective of semantics. Therefore, CCP-KG is necessary in analyzing classical Chinese poems. In addition, CCP-KG can also be applied to various tasks like reasoning and analysis in classical Chinese poetry. We conduct experiments on the tasks of determining the theme of poetry and analyzing the emotion of poetry respectively, showing the effectiveness and application value of our constructed CCP-KG.
  • Related Articles

    [1]Zhang Shuqin, Bai Guangyao, Li Hong, Zhang Minzhi. IoT Security Knowledge Reasoning Method of Multi-Source Data Fusion[J]. Journal of Computer Research and Development, 2022, 59(12): 2735-2749. DOI: 10.7544/issn1000-1239.20210954
    [2]Huang Lisheng, Ran Jinye, Luo Jing, Zhang Xiangyin. Estimating QoE for OTT Video Service Through XDR Data Analysis[J]. Journal of Computer Research and Development, 2021, 58(2): 418-426. DOI: 10.7544/issn1000-1239.2021.20190759
    [3]Chen Weili, Zheng Zibin. Blockchain Data Analysis: A Review of Status, Trends and Challenges[J]. Journal of Computer Research and Development, 2018, 55(9): 1853-1870. DOI: 10.7544/issn1000-1239.2018.20180127
    [4]Zhang Lei, Zhang Yi. Big Data Analysis by Infinite Deep Neural Networks[J]. Journal of Computer Research and Development, 2016, 53(1): 68-79. DOI: 10.7544/issn1000-1239.2016.20150663
    [5]Zhang Bin, Le Jiajin, Sun Li, Xia Xiaoling, Wang Mei, Li Yefeng. Materialization Strategies in Big Data Analysis System Based on Column-Store[J]. Journal of Computer Research and Development, 2015, 52(5): 1061-1070. DOI: 10.7544/issn1000-1239.2015.20140693
    [6]Jiang Zhuoxuan, Zhang Yan, Li Xiaoming. Learning Behavior Analysis and Prediction Based on MOOC Data[J]. Journal of Computer Research and Development, 2015, 52(3): 614-628. DOI: 10.7544/issn1000-1239.2015.20140491
    [7]Chen Shimin. Big Data Analysis and Data Velocity[J]. Journal of Computer Research and Development, 2015, 52(2): 333-342. DOI: 10.7544/issn1000-1239.2015.20140302
    [8]Zhao Hui, Yang Shuqiang, Chen Zhikun, Yin Hong, and Jin Songchang. Optimization of Range Queries and Analysis for MapReduce Systems[J]. Journal of Computer Research and Development, 2014, 51(3): 606-617.
    [9]Liu Wenfen, Guan Wei, Cao Jia, and Zhang Weiming. Detection of Secret Message in Spatial LSB Steganography Based on Contaminated Data Analysis[J]. Journal of Computer Research and Development, 2006, 43(6): 1058-1064.
    [10]Gu Yonggen, Fu Yuxi. Formal Analysis of Security Protocol Based on Process Calculus and Knowledge Derivation[J]. Journal of Computer Research and Development, 2006, 43(5): 953-958.
  • Cited by

    Periodical cited type(6)

    1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 .
    2. 徐怡,邱紫恒. 基于遗传算法的划分序乘积空间问题求解层选择. 软件学报. 2024(04): 1945-1963 .
    3. 徐怡,张杰. 基于划分序乘积空间的多尺度决策模型. 智能系统学报. 2024(06): 1528-1538 .
    4. 王宝丽,王涛,廉侃超,韩素青. 粒空间中划分知识的正交补研究. 山东大学学报(理学版). 2022(03): 31-40 .
    5. 陈丽芳,代琪,付其峰. 基于粒计算的ELM加权集成算法研究. 华北理工大学学报(自然科学版). 2020(03): 126-132 .
    6. 应申,王子豪,杜志强,丁火平,李翔翔. 数据粒度均衡的二维矢量瓦片构建方法. 地理信息世界. 2020(04): 66-74 .

    Other cited types(12)

Catalog

    Article views (1859) PDF downloads (1065) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return