• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Li, Liu Huanyu, Lu Laifeng. Probabilistic Caching Content Placement Method Based on Content-Centrality[J]. Journal of Computer Research and Development, 2020, 57(12): 2648-2661. DOI: 10.7544/issn1000-1239.2020.20190704
Citation: Li Li, Liu Huanyu, Lu Laifeng. Probabilistic Caching Content Placement Method Based on Content-Centrality[J]. Journal of Computer Research and Development, 2020, 57(12): 2648-2661. DOI: 10.7544/issn1000-1239.2020.20190704

Probabilistic Caching Content Placement Method Based on Content-Centrality

Funds: This work was supported by the National Key Research and Development Program of China (2017YFB1402102), the National Natural Science Foundation of China (61303092, 61702317), the Shaanxi Province Natural Science Basic Research Foundation (2020JM-290, 2020JM-288), and the Fundamental Research Funds for the Central Universities (GK201903093, GK201903011).
More Information
  • Published Date: November 30, 2020
  • A content-centrality-based probabilistic caching content placement method (CCPCP) is proposed to reduce cache redundancy as well as achieve better performance in terms of cache hits and utilization in information-centric networking (ICN). Different from those metrics that focus only on the centrality based on topology in the traditional network, the content centrality metric is developed in this paper. The content centrality metric not only describes the location centrality of cache nodes, but also describes the attribute of the content. In CCPCP method, each cache node individually makes a cache decision with a certain caching probability. In particular, each cache node adaptively calculates the caching probability by jointly considering the content centrality and the delay savings, which is proportional to the location centrality, the content popularity and the access delay savings. That is, the larger location centrality of cache node, the higher popularity of content, the more access delay savings, and the larger the caching probability of cache node caching the passing content. Simulation results show that CCPCP outperforms the state-of-art probabilistic methods in terms of cache hit ratio, caching content utilization ratio, access delay and cache redundancy under the less number of content replicas, even in the case that the reduction of number of content replicas is up to 32%.
  • Related Articles

    [1]Fu Hao, Long Chun, Gong Liangyi, Wei Jinxia, Huang Pan, Lin Yanzhong, Sun Degang. Malicious Domain Detection Technology Based on Semantic Graph Learning[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440375
    [2]Liu Qixu, Liu Jiaxi, Jin Ze, Liu Xinyu, Xiao Juxin, Chen Yanhui, Zhu Hongwen, Tan Yaokang. Survey of Artificial Intelligence Based IoT Malware Detection[J]. Journal of Computer Research and Development, 2023, 60(10): 2234-2254. DOI: 10.7544/issn1000-1239.202330450
    [3]Pan Jianwen, Cui Zhanqi, Lin Gaoyi, Chen Xiang, Zheng Liwei. A Review of Static Detection Methods for Android Malicious Application[J]. Journal of Computer Research and Development, 2023, 60(8): 1875-1894. DOI: 10.7544/issn1000-1239.202220297
    [4]Fan Zhaoshan, Wang Qing, Liu Junrong, Cui Zelin, Liu Yuling, Liu Song. Survey on Domain Name Abuse Detection Technology[J]. Journal of Computer Research and Development, 2022, 59(11): 2581-2605. DOI: 10.7544/issn1000-1239.20210121
    [5]Yang Zheng, Yin Qilei, Li Haoran, Miao Yuanli, Yuan Dong, Wang Qian, Shen Chao, Li Qi. Study of Wechat Sybil Detection[J]. Journal of Computer Research and Development, 2021, 58(11): 2319-2332. DOI: 10.7544/issn1000-1239.2021.20210461
    [6]Yang Wang, Gao Mingzhe, Jiang Ting. A Malicious Code Static Detection Framework Based on Multi-Feature Ensemble Learning[J]. Journal of Computer Research and Development, 2021, 58(5): 1021-1034. DOI: 10.7544/issn1000-1239.2021.20200912
    [7]Wang Jialai, Zhang Chao, Qi Xuyan, Rong Yi. A Survey of Intelligent Malware Detection on Windows Platform[J]. Journal of Computer Research and Development, 2021, 58(5): 977-994. DOI: 10.7544/issn1000-1239.2021.20200964
    [8]Wang Lina, Tan Cheng, Yu Rongwei, Yin Zhengguang. The Malware Detection Based on Data Breach Actions[J]. Journal of Computer Research and Development, 2017, 54(7): 1537-1548. DOI: 10.7544/issn1000-1239.2017.20160436
    [9]Li Peng, Wang Ruchuan, Wu Ning. Research on Unknown Malicious Code Automatic Detection Based on Space Relevance Features[J]. Journal of Computer Research and Development, 2012, 49(5): 949-957.
    [10]Dai Hua, Qin Xiaolin, and Bai Chuanjie. A Malicious Transaction Detection Method Based on Transaction Template[J]. Journal of Computer Research and Development, 2010, 47(5): 921-929.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return