• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ma Chencheng, Du Xuehui, Cao Lifeng, Wu Bei. burst-Analysis Website Fingerprinting Attack Based on Deep Neural Network[J]. Journal of Computer Research and Development, 2020, 57(4): 746-766. DOI: 10.7544/issn1000-1239.2020.20190860
Citation: Ma Chencheng, Du Xuehui, Cao Lifeng, Wu Bei. burst-Analysis Website Fingerprinting Attack Based on Deep Neural Network[J]. Journal of Computer Research and Development, 2020, 57(4): 746-766. DOI: 10.7544/issn1000-1239.2020.20190860

burst-Analysis Website Fingerprinting Attack Based on Deep Neural Network

Funds: This work was supported by the National Key Research and Development Program of China (2016YFB0501901, 2018YFB0803603) and the National Natural Science Foundation of China (61502531, 61702550, 61802436).
More Information
  • Published Date: March 31, 2020
  • Anonymous network represented by Tor is a communication intermediary network that hides user data transmission behavior. The criminals use anonymous networks to engage in cyber crimes, which cause great difficulties in network supervision. The website fingerprinting attack technology is a feasible technology for cracking anonymous communication. It can be used to discover the behavior of intranet users who secretly access sensitive websites based on anonymous network, which is an important mean of network supervision. The application of neural network in website fingerprinting attack breaks through the performance bottleneck of traditional methods, but the existing researches have not fully considered to design the neural network structures based on the characteristics of Tor traffic such as burst and the characteristics of website fingerprinting attack technology. There are problems that the neural network is too complicated and the analysis module is redundant, which leads to problems such as incomplete feature extraction and analysis and running slowly. Based on the researches and analysis of Tor traffic characteristics, a lightweight burst feature extraction and analysis module based on one-dimensional convolutional network is designed, and a burst-analysis website fingerprinting attack method based on deep neural network is proposed. Furthermore, aiming at the shortcoming of simply using the threshold method to analyze fingerprinting vectors in open world scenarios, a fingerprint vector analysis model based on random forest algorithm is designed. The classification accuracy of the improved model reaches 99.87% and the model has excellent performance in alleviating concept drift, bypassing defense techniques against website fingerprinting attacks, identifying Tor hidden websites, performance of models trained with a small amount of data, and run time, which improves the practicality of applying website fingerprinting attack technology to real networks.
  • Related Articles

    [1]Wu Huanhuan, Xie Ruilin, Qiao Yuanxin, Chen Xiang, Cui Zhanqi. Optimizing Deep Neural Network Based on Interpretability Analysis[J]. Journal of Computer Research and Development, 2024, 61(1): 209-220. DOI: 10.7544/issn1000-1239.202220803
    [2]Sun Xueliang, Huang Anxin, Luo Xiapu, Xie Yi. Webpage Fingerprinting Identification on Tor: A Survey[J]. Journal of Computer Research and Development, 2021, 58(8): 1773-1788. DOI: 10.7544/issn1000-1239.2021.20200498
    [3]Zheng Haibin, Chen Jinyin, Zhang Yan, Zhang Xuhong, Ge Chunpeng, Liu Zhe, Ouyang Yike, Ji Shouling. Survey of Adversarial Attack, Defense and Robustness Analysis for Natural Language Processing[J]. Journal of Computer Research and Development, 2021, 58(8): 1727-1750. DOI: 10.7544/issn1000-1239.2021.20210304
    [4]Zhuang Liansheng, Lü Yang, Yang Jian, Li Houqiang. Long Term Recurrent Neural Network with State-Frequency Memory[J]. Journal of Computer Research and Development, 2019, 56(12): 2641-2648. DOI: 10.7544/issn1000-1239.2019.20180474
    [5]Chen Ke, Liang Bin, Ke Wende, Xu Bo, Zeng Guochao. Chinese Micro-Blog Sentiment Analysis Based on Multi-Channels Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(5): 945-957. DOI: 10.7544/issn1000-1239.2018.20170049
    [6]Liang Bin, Liu Quan, Xu Jin, Zhou Qian, Zhang Peng. Aspect-Based Sentiment Analysis Based on Multi-Attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1724-1735. DOI: 10.7544/issn1000-1239.2017.20170178
    [7]Zhang Lei, Zhang Yi. Big Data Analysis by Infinite Deep Neural Networks[J]. Journal of Computer Research and Development, 2016, 53(1): 68-79. DOI: 10.7544/issn1000-1239.2016.20150663
    [8]Zhou Yanwei, Yang Qiliang, Yang Bo, Wu Zhenqiang. A Tor Anonymous Communication System with Security Enhancements[J]. Journal of Computer Research and Development, 2014, 51(7): 1538-1546.
    [9]Zhang Haixia, Su Purui, and Feng Dengguo. A Network Security Analysis Model Based on the Increase in Attack Ability[J]. Journal of Computer Research and Development, 2007, 44(12): 2012-2019.
    [10]Wu Zhenqiang, Ma Jianfeng. A Dynamic Mix Anonymity Algorithm for Wireless Ad Hoc Networks[J]. Journal of Computer Research and Development, 2007, 44(4): 560-566.
  • Cited by

    Periodical cited type(23)

    1. 马晓欢,李祉岐,王悦振,陶源,刘玉岭. 网络攻击和网络攻击事件判定研究. 信息技术与标准化. 2024(04): 28-34 .
    2. 孙梦怡,魏嘉迪,李超. 基于特征融合的赌博网站识别研究. 网络安全技术与应用. 2024(05): 54-58 .
    3. 邹洪,张佳发,曾子峰,许伟杰,江家伟. 基于流量分析的Web服务器数据篡改攻击检测方法研究. 微型电脑应用. 2024(06): 148-150+155 .
    4. 蔡满春,席荣康,朱懿,赵忠斌. 一种Tor网站多网页多标签指纹识别方法. 信息网络安全. 2024(07): 1088-1097 .
    5. 杨宏宇,宋成瑜,王朋,赵永康,胡泽,成翔,张良. 洋葱路由器网站指纹攻击与防御研究综述. 电子与信息学报. 2024(09): 3474-3489 .
    6. 杨立圣,罗文华. 基于改进RoBERTa的恶意加密流量检测. 警察技术. 2023(01): 61-65 .
    7. 席荣康,蔡满春,芦天亮. 基于数据增强与流数据处理的Tor流量分析模型. 计算机工程. 2023(03): 177-184 .
    8. 梁嬿良,朱立福,张明亮,董弋粲. 基于回归模型的加密流量图片识别方法研究. 网络安全技术与应用. 2023(04): 36-38 .
    9. Shengli Zhou,Linqi Ruan,Qingyang Xu,Mincheng Chen. Multimodal Fraudulent Website Identification Method Based on Heterogeneous Model Ensemble. China Communications. 2023(05): 263-274 .
    10. 王曦锐,芦天亮,杨成,于兴崭. 基于Res-CAN的Tor网站指纹识别模型. 中国人民公安大学学报(自然科学版). 2023(02): 76-84 .
    11. 王昊 ,周建涛 ,郝昕毓 ,王飞宇 . 基于特征再抽象(FRA)的多元时序预测方法. 计算机科学. 2023(S2): 662-669 .
    12. 杨刚,姜舟,张娇婷,汪俊永,王强,张研. 融合协议信息的TOR匿名网络流量识别方法. 网络安全与数据治理. 2023(12): 41-47 .
    13. 周玲. 电力通信网络终端未知威胁协同防御方法. 电力大数据. 2022(03): 34-42 .
    14. 许伟,翟煜锦. 基于跨模态特征融合的行人重识别系统设计. 信息与电脑(理论版). 2022(12): 179-181 .
    15. 邹鸿程,苏金树,魏子令,赵宝康,夏雨生,赵娜. 网站指纹识别与防御研究综述. 计算机学报. 2022(10): 2243-2278 .
    16. 席荣康,蔡满春,芦天亮,李彦霖. 基于自注意力机制和时空特征的Tor网站流量分析模型. 计算机应用. 2022(10): 3084-3090 .
    17. 张啸天. 面向防御的网站指纹攻击研究. 网络安全技术与应用. 2022(11): 11-14 .
    18. 蒋首志,曹金璇,殷浩展,芦天亮. 基于MHA与SDAE的Tor网站指纹识别模型. 信息网络安全. 2022(10): 8-14 .
    19. 蔡满春,王腾飞,岳婷,芦天亮. 基于ARF的Tor网站指纹识别技术. 信息网络安全. 2021(04): 39-48 .
    20. 孙学良,黄安欣,罗夏朴,谢怡. 针对Tor的网页指纹识别研究综述. 计算机研究与发展. 2021(08): 1773-1788 . 本站查看
    21. 李玎,祝跃飞,芦斌,林伟. 网络加密流量侧信道攻击研究综述. 网络与信息安全学报. 2021(04): 114-130 .
    22. 冯仁君,刘思雨,薛劲松. 对抗样本驱动的网络指纹防御方法. 福建电脑. 2021(09): 19-23 .
    23. 李彦霖,蔡满春,芦天亮,席荣康. 遗传算法优化CNN的网站指纹攻击方法. 信息网络安全. 2021(09): 59-66 .

    Other cited types(23)

Catalog

    Article views (1889) PDF downloads (904) Cited by(46)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return