• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Guo Jinyang, Shao Chuanming, Wang Jing, Li Chao, Zhu Haojin, Guo Minyi. Programming and Developing Environment for FPGA Graph Processing: Survey and Exploration[J]. Journal of Computer Research and Development, 2020, 57(6): 1164-1178. DOI: 10.7544/issn1000-1239.2020.20200106
Citation: Guo Jinyang, Shao Chuanming, Wang Jing, Li Chao, Zhu Haojin, Guo Minyi. Programming and Developing Environment for FPGA Graph Processing: Survey and Exploration[J]. Journal of Computer Research and Development, 2020, 57(6): 1164-1178. DOI: 10.7544/issn1000-1239.2020.20200106

Programming and Developing Environment for FPGA Graph Processing: Survey and Exploration

Funds: This work was supported by the National Key Research and Development Plan of China (2018YFB1003500).
More Information
  • Published Date: May 31, 2020
  • Due to the advantages of high performance and efficiency, graph processing accelerators based on reconfigurable architecture field programmable gate array (FPGA) have attracted much attention, which satisfy complex graph applications with various basic operations and large-scale of graph data. However, efficient code design for FPGA takes long time, while the existing functional programming environment cannot achieve desirable performance. Thus, the problem of programming wall on FPGA is significant, and has become a serious obstacle when designing the dedicated accelerators. A well-designed programming environment is necessary for the further popularity of FPGA-based graph processing accelerators. A well-designed programming environment calls for convenient application programming interfaces, scalable application programming models, efficient high-level synthesis tools, and a domain-specific language that can integrate software/hardware features and generate high-performance underlying code. In this article, we make a systematic exploration of the programming environment for FPGA graph processing. We mainly introduce and analyze programming models, high-level synthesis, programming languages, and the related hardware frameworks. In addition, we also introduce the domestic and foreign development of FPGA-based graph processing accelerators. Finally, we discuss the open issues and challenges in this specific area.
  • Related Articles

    [1]Zhang Liping, Liu Lei, Hao Xiaohong, Li Song, Hao Zhongxiao. Voronoi-Based Group Reverse k Nearest Neighbor Query in Obstructed Space[J]. Journal of Computer Research and Development, 2017, 54(4): 861-871. DOI: 10.7544/issn1000-1239.2017.20151111
    [2]Yang Zexue, Hao Zhongxiao. Group Obstacle Nearest Neighbor Query in Spatial Database[J]. Journal of Computer Research and Development, 2013, 50(11): 2455-2462.
    [3]Liu Runtao, Hao Zhongxiao. Fast Algorithm of Nearest Neighbor Query for Line Segments of Spatial Database[J]. Journal of Computer Research and Development, 2011, 48(12): 2379-2384.
    [4]Miao Dongjing, Shi Shengfei, and Li Jianzhong. An Algorithm on Probabilistic Frequent Nearest Neighbor Query over Snapshots of Uncertain Database with Locally Correlation[J]. Journal of Computer Research and Development, 2011, 48(10): 1812-1822.
    [5]Liao Haojun, Han Jizhong, Fang Jinyun. All-Nearest-Neighbor Queries Processing in Spatial Databases[J]. Journal of Computer Research and Development, 2011, 48(1): 86-93.
    [6]Sun Dongpu, Hao Zhongxiao. Group Nearest Neighbor Queries Based on Voronoi Diagrams[J]. Journal of Computer Research and Development, 2010, 47(7): 1244-1251.
    [7]Sun Dongpu, Hao Zhongxiao. Multi-Type Nearest Neighbor Queries with Partial Range Constrained[J]. Journal of Computer Research and Development, 2009, 46(6): 1036-1042.
    [8]Hao Zhongxiao, Wang Yudong, He Yunbin. Line Segment Nearest Neighbor Query of Spatial Database[J]. Journal of Computer Research and Development, 2008, 45(9): 1539-1545.
    [9]Zhang Jing, Lu Hong, and Xue Xiangyang. Efficient Sports Video Retrieval Based on Index Structure[J]. Journal of Computer Research and Development, 2006, 43(11): 1953-1958.
    [10]Dong Daoguo, Liu Zhenzhong, and Xue Xiangyang. VA-Trie: A New and Efficient High Dimensional Index Structure for Approximate k Nearest Neighbor Query[J]. Journal of Computer Research and Development, 2005, 42(12): 2213-2218.
  • Cited by

    Periodical cited type(6)

    1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 .
    2. 徐怡,邱紫恒. 基于遗传算法的划分序乘积空间问题求解层选择. 软件学报. 2024(04): 1945-1963 .
    3. 徐怡,张杰. 基于划分序乘积空间的多尺度决策模型. 智能系统学报. 2024(06): 1528-1538 .
    4. 王宝丽,王涛,廉侃超,韩素青. 粒空间中划分知识的正交补研究. 山东大学学报(理学版). 2022(03): 31-40 .
    5. 陈丽芳,代琪,付其峰. 基于粒计算的ELM加权集成算法研究. 华北理工大学学报(自然科学版). 2020(03): 126-132 .
    6. 应申,王子豪,杜志强,丁火平,李翔翔. 数据粒度均衡的二维矢量瓦片构建方法. 地理信息世界. 2020(04): 66-74 .

    Other cited types(12)

Catalog

    Article views (2426) PDF downloads (668) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return